目录
即看即用
一、赋值初始化
二、用指针数组
三、上面的只适合静态数组,动态数组用C++11的allocator
更多详情
1、如果类有默认构造函数
object *p = new object[3];
2、如果类没有构造函数
没有默认构造函数,有自定义的构造函数 object(contx* c,stack* s)
object *p = new object[3]{{cct,this},{cct,this},{cct,this}};
(但这个要求object构造函数前不能有explicit,否则无法将{cct,this}隐式转换成object)
或
object *p = new object[3]{object(cct,this),object(cct,this),object(cct,this)};
(但这个要求object有object::object(const object&)构造函数,否则报错: error use of deleted function)
实例
#include
using namespace std;
class Acct
{
public:
// Define default constructor and a constructor that accepts
// an initial balance.
Acct() {
balance = 0.0;
cout << "no var create...." << endl;
}
Acct( double init_balance ,double init_cc ) {
balance = init_balance;
cc = init_cc;
cout << "with var create..." << endl;
}
~Acct(){
cout << "delete..." << endl;
}
private:
double balance;
double cc;
};
int main()
{
//栈中创建对象数组
Acct myAcct[6];
//堆中创建对象数组
Acct *CheckingAcct = new Acct[3];
Acct *SavingsAcct = new Acct[3] {Acct(34.98,2), Acct(131.4,2), Acct(521.1,2)};
Acct *SavingsAcct2 = new Acct[3] {{34.98,2}, {131.4,2}, {521.1,2}};
delete [] CheckingAcct;
delete [] SavingsAcct ;
// ...
}
typedef Acct* ACCP; //ACCP是个指向EquipmentPiece的指针
ACCP bestPieces[10]; //等同于 ACCP *bestPieces = new ACCP[10];
//然后初始化 for(int i = 0; i < 10; i++){ bestPieces[i] = new Acct(balance ,cc ) ; }
注意: 要记得将此数组所指的所有对象删除。如果忘了会产生资源泄露。还有就是该方法与对象数组相比需要额外内存用于存放指针。(过度使用内存 这一问题可以避免,见第三种方法)
对于allocator类,请看 另一篇blog C++ allocator类学习理解 - SimonKly - 博客园
请看一下代码关于使用如何实现无默认构造函数,动态实例化对象数组的allocator方法
//#include "CAnimal.h"
#include
#include
using namespace std;
class Animal
{
public:
#if 0 //即使为0,没有默认构造也是可以,
Animal() : num(0)
{
cout << "Animal constructor default" << endl;
}
#endif
Animal(int _num) : num(_num)
{
cout << "Animal constructor param" << endl;
}
~Animal()
{
cout << "Animal destructor" << endl;
}
void show()
{
cout << this->num << endl;
}
private:
int num;
};
/*
由于allocator将内存空间的分配和对象的构建分离
故使用allocator分为以下几步:
1.allocator与类绑定,因为allocator是一个泛型类
2.allocate()申请指定大小空间
3.construct()构建对象,其参数为可变参数,所以可以选择匹配的构造函数
4.使用,与其它指针使用无异
5.destroy()析构对象,此时空间还是可以使用
6.deallocate()回收空间
*/
int main()
{
allocator alloc; //1.
Animal *a = alloc.allocate(5); //2.
//3.
/*void construct(U* p, Args&&... args);
在p指向的位置构建对象U,此时该函数不分配空间,pointer p是allocate分配后的起始地址
constructor将其参数转发给相应的构造函数构造U类型的对象,相当于 ::new ((void*) p)
U(forward (args)...);
*/
alloc.construct(a, 1);
alloc.construct(a + 1);
alloc.construct(a + 2, 3);
alloc.construct(a + 3);
alloc.construct(a + 4, 5);
//4.
a->show();
(a + 1)->show();
(a + 2)->show();
(a + 3)->show();
(a + 4)->show();
//5.
for (int i = 0; i < 5; i++)
{
alloc.destroy(a + i);
}
//对象销毁之后还可以继续构建,因为构建和内存的分配是分离的
//6.
alloc.deallocate(a, 5);
cin.get();
return 0;
}
如果构造函数是多个参数,则可以这样:
//3.
alloc.construct(a, Animal(50,"dog"));
alloc.construct(a + 1,Animal(30,"cat"));
alloc.construct(a + 2,Animal(100,"goal"));
alloc.construct(a + 3,Animal(65,"cow"));
alloc.construct(a + 4,Animal(5,"bird"));
C++中若类中没有默认构造函数,如何使用对象数组 - SimonKly - 博客园
#include "allocator.hpp"
#include
#include
#include
#include
namespace allocator_ {
// reference: C++ Primer(Fifth Edition) 12.2.2
int test_allocator_1()
{
std::allocator alloc; // 可以分配string的allocator对象
int n{ 5 };
auto const p = alloc.allocate(n); // 分配n个未初始化的string
auto q = p; // q指向最后构造的元素之后的位置
alloc.construct(q++); // *q为空字符串
alloc.construct(q++, 10, 'c'); // *q为cccccccccc
alloc.construct(q++, "hi"); // *q为hi
std::cout << *p << std::endl; // 正确:使用string的输出运算符
//std::cout << *q << std::endl; // 灾难:q指向未构造的内存
std::cout << p[0] << std::endl;
std::cout << p[1] << std::endl;
std::cout << p[2] << std::endl;
while (q != p) {
alloc.destroy(--q); // 释放我们真正构造的string
}
alloc.deallocate(p, n);
return 0;
}
int test_allocator_2()
{
std::vector vi{ 1, 2, 3, 4, 5 };
// 分配比vi中元素所占用空间大一倍的动态内存
std::allocator alloc;
auto p = alloc.allocate(vi.size() * 2);
// 通过拷贝vi中的元素来构造从p开始的元素
/* 类似拷贝算法,uninitialized_copy接受三个迭代器参数。前两个表示输入序列,第三个表示
这些元素将要拷贝到的目的空间。传递给uninitialized_copy的目的位置迭代器必须指向未构造的
内存。与copy不同,uninitialized_copy在给定目的位置构造元素。
类似copy,uninitialized_copy返回(递增后的)目的位置迭代器。因此,一次uninitialized_copy调用
会返回一个指针,指向最后一个构造的元素之后的位置。
*/
auto q = std::uninitialized_copy(vi.begin(), vi.end(), p);
// 将剩余元素初始化为42
std::uninitialized_fill_n(q, vi.size(), 42);
return 0;
}
// reference: http://www.modernescpp.com/index.php/memory-management-with-std-allocator
int test_allocator_3()
{
std::cout << std::endl;
std::allocator intAlloc;
std::cout << "intAlloc.max_size(): " << intAlloc.max_size() << std::endl;
int* intArray = intAlloc.allocate(100);
std::cout << "intArray[4]: " << intArray[4] << std::endl;
intArray[4] = 2011;
std::cout << "intArray[4]: " << intArray[4] << std::endl;
intAlloc.deallocate(intArray, 100);
std::cout << std::endl;
std::allocator doubleAlloc;
std::cout << "doubleAlloc.max_size(): " << doubleAlloc.max_size() << std::endl;
std::cout << std::endl;
std::allocator stringAlloc;
std::cout << "stringAlloc.max_size(): " << stringAlloc.max_size() << std::endl;
std::string* myString = stringAlloc.allocate(3);
stringAlloc.construct(myString, "Hello");
stringAlloc.construct(myString + 1, "World");
stringAlloc.construct(myString + 2, "!");
std::cout << myString[0] << " " << myString[1] << " " << myString[2] << std::endl;
stringAlloc.destroy(myString);
stringAlloc.destroy(myString + 1);
stringAlloc.destroy(myString + 2);
stringAlloc.deallocate(myString, 3);
std::cout << std::endl;
return 0;
}
//
// reference: http://en.cppreference.com/w/cpp/memory/allocator
int test_allocator_4()
{
std::allocator a1; // default allocator for ints
int* a = a1.allocate(1); // space for one int
a1.construct(a, 7); // construct the int
std::cout << a[0] << '\n';
a1.deallocate(a, 1); // deallocate space for one int
// default allocator for strings
std::allocator a2;
// same, but obtained by rebinding from the type of a1
decltype(a1)::rebind::other a2_1;
// same, but obtained by rebinding from the type of a1 via allocator_traits
std::allocator_traits::rebind_alloc a2_2;
std::string* s = a2.allocate(2); // space for 2 strings
a2.construct(s, "foo");
a2.construct(s + 1, "bar");
std::cout << s[0] << ' ' << s[1] << '\n';
a2.destroy(s);
a2.destroy(s + 1);
a2.deallocate(s, 2);
return 0;
}
} // namespace allocator_
C++中std::allocator的使用_网络资源是无限的-CSDN博客_allocator
有默认的构造函数:
如果一个类有默认的构造函数,使用new动态实例化一个对象数组不是件难事,如下代码:
class animal
{
public:
animal():num(0)
{}
~animal()
{}
private:
int num;
};
Animal *ani = new Animal[5];
delete[]ani;
然而 new Obj[n]的形式仅仅适用于不需传入实参的默认构造函数,否则编译器报错。
没有默认构造函数|初始化对象数组的同时指定参数
想要初始化对象数组的同时指定各个构造函数的参数,有以下几种解决途径:
静态数组
1.若初始化对象数组时已知其size,使用诸如 new Obj[n]{(),(),...()} 的形式,大括号内每个小括号对应每个对象的构造函数参数:
class Array1D
{
public:
Array1D(int len2)
:len2D(len2)
{
plist = new T[len2];
for (int i = 0; i < len2; i++)
plist[i] = static_cast(0);
}
~Array1D()
{
if (nullptr != plist)
delete[] plist;
}
private:
T* plist;
int len2D;
};
pArray1D = new Array1D[2]{(1),(2)}
构造函数有多个参数时:
pArray1D = new Array1D[2]{{1,100},{2,199}}
动态数组
2.若初始化对象数组时未知其size,需要把分配内存和构建对象的动作分开。可借助C++11的allocator。先使用allocate分配内存并用指针记录这块空间;然后用construct方法对指针所指向内存进行对象构建;当然不再使用对象时用destory方法析构对象;注意,既然分配内存和构建对象动作已分开,那么析构对象和释放内存也要配对,用deallocate释放内存:
class Array2D
{
public:
//class Array1D
class Array1D
{...};
//Array2D
Array2D(int len1, int len2)
:len1D(len1)
{
pArray1D = alloc.allocate(len1);
for (int i = 0; i < len1; i++) {
alloc.construct(pArray1D + i, len2);
}
}
~Array2D()
{
for (int i = 0; i < len1D; i++) {
alloc.destroy(pArray1D + i);
}
alloc.deallocate(pArray1D, len1D);
}
private:
Array1D* pArray1D;
int len1D;
allocator alloc;
};
3.使用operator new和placement new,与allocator原理类似,分四步走:
class animal
{
public:
animal():num(0)
{}
animal(int _num):num(_num)
{}
~animal()
{}
void show() {
cout << num << endl;
}
void* operator new(size_t size, void* p)
{
return p;
}
private:
int num;
};
int main(int argc, char* argv[])
{
{
// operator new
void* p = operator new(5 * sizeof(animal));
animal* a = static_cast(p);
// placement new, constructor
for (int i = 0; i < 4; i++)
{
new(a + i) animal(i);
}
new(a + 4) animal;
// use
for (int i = 0; i < 5; i++) {
(a + i)->show();
}
// destructor
for (int i = 0; i < 5; i++) {
(a + i)->~animal();
}
// delete
delete[] p;
}
return 0;
}
参考:https://www.cnblogs.com/SimonKly/p/7819147.html
原文链接:https://blog.csdn.net/brahmsjiang/article/details/88347005
//#include "CAnimal.h"
#include
#include
using namespace std;
class Animal
{
public:
#if 0 //即使为0,没有默认构造也是可以,
Animal() : num(0)
{
cout << "Animal constructor default" << endl;
}
#endif
Animal(int _num,string _name) : num(_num),name(_name)
{
cout << "Animal constructor param" << endl;
}
~Animal()
{
cout << "Animal destructor" << endl;
}
void show()
{
cout <<"num:"<num << endl;
cout <<"name:"<< this->name << endl;
}
private:
int num;
string name;
};
/*
由于allocator将内存空间的分配和对象的构建分离
故使用allocator分为以下几步:
1.allocator与类绑定,因为allocator是一个泛型类
2.allocate()申请指定大小空间
3.construct()构建对象,其参数为可变参数,所以可以选择匹配的构造函数
4.使用,与其它指针使用无异
5.destroy()析构对象,此时空间还是可以使用
6.deallocate()回收空间
*/
int main()
{
allocator alloc; //1.
Animal *a = alloc.allocate(5); //2.
//3.
alloc.construct(a, Animal(50,"dog"));
alloc.construct(a + 1,Animal(30,"cat"));
alloc.construct(a + 2,Animal(100,"goal"));
alloc.construct(a + 3,Animal(65,"cow"));
alloc.construct(a + 4,Animal(5,"bird"));
//4.
a->show();
(a + 1)->show();
(a + 2)->show();
(a + 3)->show();
(a + 4)->show();
//5.
for (int i = 0; i < 5; i++)
{
alloc.destroy(a + i);
}
//对象销毁之后还可以继续构建,因为构建和内存的分配是分离的
//6.
alloc.deallocate(a, 5);
cin.get();
return 0;
}