python如何提升爬虫效率

单线程+多任务异步协程

协程

在函数(特殊函数)定义的时候,使用async修饰,函数调用后,内部语句不会立即执行,而是会返回一个协程对象

任务对象

任务对象=高级的协程对象(进一步封装)=特殊的函数

任务对象必须要注册到时间循环对象中

给任务对象绑定回调:爬虫的数据解析中

事件循环

当做是一个装载任务对象的容器

当启动事件循环对象的时候,存储在内的任务对象会异步执行

特殊函数内部不能写不支持异步请求的模块,如time,requests...否则虽然不报错但实现不了异步

time.sleep -- asyncio.sleep

requests -- aiohttp

import asyncio

import time

start_time = time.time()

async def get_request(url):

  await asyncio.sleep(2)

  print(url,'下载完成!')

urls = [

  'www.1.com',

  'www.2.com',

]

task_lst = [] # 任务对象列表

for url in urls:

  c = get_request(url) # 协程对象

  task = asyncio.ensure_future(c) # 任务对象

  # task.add_done_callback(...)  # 绑定回调

  task_lst.append(task)

loop = asyncio.get_event_loop() # 事件循环对象

loop.run_until_complete(asyncio.wait(task_lst)) # 注册,手动挂起

线程池+requests模块

# 线程池

import time

from multiprocessing.dummy import Pool

start_time = time.time()

url_list = [

  'www.1.com',

  'www.2.com',

  'www.3.com',

]

def get_request(url):

  print('正在下载...',url)

  time.sleep(2)

  print('下载完成!',url)

pool = Pool(3)

pool.map(get_request,url_list)

print('总耗时:',time.time()-start_time)

两个方法提升爬虫效率

起一个flask服务端

from flask import Flask

import time

app = Flask(__name__)

@app.route('/bobo')

def index_bobo():

  time.sleep(2)

  return 'hello bobo!'

@app.route('/jay')

def index_jay():

  time.sleep(2)

  return 'hello jay!'

@app.route('/tom')

def index_tom():

  time.sleep(2)

  return 'hello tom!'

if __name__ == '__main__':

  app.run(threaded=True)

aiohttp模块+单线程多任务异步协程

import asyncio

import aiohttp

import requests

import time

start = time.time()

async def get_page(url):

  # page_text = requests.get(url=url).text

  # print(page_text)

  # return page_text

  async with aiohttp.ClientSession() as s: #生成一个session对象

    async with await s.get(url=url) as response:

      page_text = await response.text()

      print(page_text)

  return page_text

urls = [

  'http://127.0.0.1:5000/bobo',

  'http://127.0.0.1:5000/jay',

  'http://127.0.0.1:5000/tom',

]

tasks = []

for url in urls:

  c = get_page(url)

  task = asyncio.ensure_future(c)

  tasks.append(task)

loop = asyncio.get_event_loop()

loop.run_until_complete(asyncio.wait(tasks))

end = time.time()

print(end-start)

# 异步执行!

# hello tom!

# hello bobo!

# hello jay!

# 2.0311079025268555

'''

aiohttp模块实现单线程+多任务异步协程

并用xpath解析数据

'''

import aiohttp

import asyncio

from lxml import etree

import time

start = time.time()

# 特殊函数:请求的发送和数据的捕获

# 注意async with await关键字

async def get_request(url):

  async with aiohttp.ClientSession() as s:

    async with await s.get(url=url) as response:

      page_text = await response.text()

      return page_text    # 返回页面源码

# 回调函数,解析数据

def parse(task):

  page_text = task.result()

  tree = etree.HTML(page_text)

  msg = tree.xpath('/html/body/ul//text()')

  print(msg)

urls = [

  'http://127.0.0.1:5000/bobo',

  'http://127.0.0.1:5000/jay',

  'http://127.0.0.1:5000/tom',

]

tasks = []

for url in urls:

  c = get_request(url)

  task = asyncio.ensure_future(c)

  task.add_done_callback(parse) #绑定回调函数!

  tasks.append(task)

loop = asyncio.get_event_loop()

loop.run_until_complete(asyncio.wait(tasks))

end = time.time()

print(end-start)

requests模块+线程池

import time

import requests

from multiprocessing.dummy import Pool

start = time.time()

urls = [

  'http://127.0.0.1:5000/bobo',

  'http://127.0.0.1:5000/jay',

  'http://127.0.0.1:5000/tom',

]

def get_request(url):

  page_text = requests.get(url=url).text

  print(page_text)

  return page_text

pool = Pool(3)

pool.map(get_request, urls)

end = time.time()

print('总耗时:', end-start)

# 实现异步请求

# hello jay!

# hello bobo!

# hello tom!

# 总耗时: 2.0467123985290527

小结

爬虫的加速目前掌握了两种方法:

aiohttp模块+单线程多任务异步协程

requests模块+线程池

爬虫接触的模块有三个:

requests

urllib

aiohttp

接触了一下flask开启服务器

以上就是python如何提升爬虫效率的详细内容,更多关于python提升爬虫效率的资料请关注其它相关文章!

你可能感兴趣的:(python如何提升爬虫效率)