第七课 大数据技术之Spark-SparkStreaming

第七课 大数据技术之Spark-SparkStreaming

文章目录

  • 第七课 大数据技术之Spark-SparkStreaming
    • 第一节 SparkStreaming 概述
      • 1.1 Spark Streaming介绍
      • 1.2 Spark Streaming架构
      • 1.3WordCount 案例实操
    • 第二节 DStream 创建
      • 2.1 RDD 队列
      • 2.2 自定义数据源
      • 2.3 Kafka 数据源(面试、开发重点)
    • 第三节 DStream转换和输出关闭
      • 3.1 无状态转化操作
        • 3.1.1 Transform
        • 3.1.2 join
      • 3.2 有状态转化操作
        • 3.2.1 UpdateStateByKey
        • 3.2.2 WindowOperations
      • 3.3 DStream输出
      • 3.4 优雅关闭
    • 第四节 SparkStreaming案例实操
      • 4.1 环境准备
      • 4.2 案例需求一
      • 4.2 案例需求二
      • 4.3 案例需求三

第一节 SparkStreaming 概述

1.1 Spark Streaming介绍

  1. Spark 流使得构建可扩展的容错流应用程序变得更加容易。
  2. Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多,例如:Kafka、 Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象原语如:map、reduce、join、window 等进行运算。而结果也能保存在很多地方,如 HDFS,数据库等。
    第七课 大数据技术之Spark-SparkStreaming_第1张图片
  3. 和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作DStream。DStream 是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为 RDD 存在,而 DStream 是由这些RDD 所组成的序列(因此得名“离散化”)。所以简单来将,DStream 就是对 RDD 在实时数据处理场景的一种封装
  4. Spark Streaming 的特点
    • 易用
    • 容错
    • 易整合到 Spark 体系
  5. Sparkstreaming准实时(秒,分钟),微批次(时间)的数据处理框架
    • 无法达到真正的毫秒级别的 实时数据处理
    • 但是有不能成为离线 因为离线的延时太高了 小时或天级别

1.2 Spark Streaming架构

  1. 整体架构图
    第七课 大数据技术之Spark-SparkStreaming_第2张图片
  2. SparkStreaming 架构图
    第七课 大数据技术之Spark-SparkStreaming_第3张图片
  3. 背压机制。Spark 1.5 以前版本,用户如果要限制 Receiver 的数据接收速率,可以通过设置静态配制参数spark.streaming.receiver.maxRate的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer 数据生产高于 maxRate,当前集群处理能力也高于 maxRate,这就会造成资源利用率下降等问题。
  4. 为了更好的协调数据接收速率与资源处理能力,1.5 版本开始 Spark Streaming 可以动态控制数据接收速率来适配集群数据处理能力。背压机制(即 Spark Streaming Backpressure): 根据JobScheduler 反馈作业的执行信息来动态调整Receiver 数据接收率
  5. 通过属性spark.streaming.backpressure.enabled来控制是否启用 backpressure 机制,默认值false,即不启用。

1.3WordCount 案例实操

  1. 需求:使用 netcat 工具向 9999 端口不断的发送数据,通过 SparkStreaming 读取端口数据并统计不同单词出现的次数
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming_2.12artifactId>
            <version>3.0.0version>
        dependency>
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming01_WordCount {

    def main(args: Array[String]): Unit = {

        // TODO 创建环境对象
        // StreamingContext创建时,需要传递两个参数
        // 第一个参数表示环境配置
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        // 第二个参数表示批量处理的周期(采集周期)
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // TODO 逻辑处理
        // 获取端口数据
        val lines: ReceiverInputDStream[String] = ssc.socketTextStream("localhost", 9999)

        val words = lines.flatMap(_.split(" "))

        val wordToOne = words.map((_,1))

        val wordToCount: DStream[(String, Int)] = wordToOne.reduceByKey(_+_)

        wordToCount.print()

        // 由于SparkStreaming采集器是长期执行的任务,所以不能直接关闭
        // 如果main方法执行完毕,应用程序也会自动结束。所以不能让main执行完毕
        //ssc.stop()
        // 1. 启动采集器
        ssc.start()
        // 2. 等待采集器的关闭
        ssc.awaitTermination()
    }
}
  1. 启动程序并通过netcat 发送数据:
nc -lk 9999
hello 
spark
  1. WordCount 解析。Discretized Stream 是 Spark Streaming 的基础抽象,代表持续性的数据流和经过各种 Spark 原语操作后的结果数据流。在内部实现上,DStream 是一系列连续的 RDD 来表示。每个RDD 含有一段时间间隔内的数据。
    第七课 大数据技术之Spark-SparkStreaming_第4张图片

  2. 对数据的操作也是按照RDD 为单位来进行的
    第七课 大数据技术之Spark-SparkStreaming_第5张图片

  3. 计算过程由 Spark Engine 来完成
    第七课 大数据技术之Spark-SparkStreaming_第6张图片

第二节 DStream 创建

2.1 RDD 队列

  1. 测试过程中,可以通过使用 ssc.queueStream(queueOfRDDs)来创建 DStream,每一个推送到这个队列中的RDD,都会作为一个DStream 处理。
  2. 案例实操。需求:循环创建几个 RDD,将RDD 放入队列。通过 SparkStream 创建 Dstream,计算
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable

object SparkStreaming02_Queue {

    def main(args: Array[String]): Unit = {

        // TODO 创建环境对象
        // StreamingContext创建时,需要传递两个参数
        // 第一个参数表示环境配置
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        // 第二个参数表示批量处理的周期(采集周期)
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val rddQueue = new mutable.Queue[RDD[Int]]()

        val inputStream = ssc.queueStream(rddQueue,oneAtATime = false)
        val mappedStream = inputStream.map((_,1))
        val reducedStream = mappedStream.reduceByKey(_ + _)
        reducedStream.print()

        ssc.start()

        for (i <- 1 to 5) {
            rddQueue += ssc.sparkContext.makeRDD(1 to 300, 10)
            Thread.sleep(2000)
        }

        ssc.awaitTermination()
    }
}

2.2 自定义数据源

  1. 需要继承Receiver,并实现 onStart、onStop 方法来自定义数据源采集。
  2. 案例实操。需求:自定义数据源,实现监控某个端口号,获取该端口号内容。
package com.atguigu.bigdata.spark.streaming

import java.util.Random

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable

object SparkStreaming03_DIY {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val messageDS: ReceiverInputDStream[String] = ssc.receiverStream(new MyReceiver())
        messageDS.print()

        ssc.start()
        ssc.awaitTermination()
    }
    /*
    自定义数据采集器
    1. 继承Receiver,定义泛型, 传递参数
    2. 重写方法
     */
    class MyReceiver extends Receiver[String](StorageLevel.MEMORY_ONLY) {
        private var flg = true
        override def onStart(): Unit = {
            new Thread(new Runnable {
                override def run(): Unit = {
                    while ( flg ) {
                        val message = "采集的数据为:" + new Random().nextInt(10).toString
                        store(message)
                        Thread.sleep(500)
                    }
                }
            }).start()
        }

        override def onStop(): Unit = {
            flg = false;
        }
    }
}

2.3 Kafka 数据源(面试、开发重点)

  1. 版本选型
    • ReceiverAPI:需要一个专门的Executor 去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的Executor 和计算的Executor 速度会有所不同,特别在接收数据的Executor 速度大于计算的Executor 速度,会导致计算数据的节点内存溢出。早期版本中提供此方式,当前版本不适用
    • DirectAPI:是由计算的Executor 来主动消费Kafka 的数据,速度由自身控制。
  2. Kafka 0-8 Receiver 模式(当前版本不适用),Kafka 0-8 Direct 模式(当前版本不适用)。
  3. Kafka 0-10 Direct 模式需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台。
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming-kafka-0-10_2.12artifactId>
            <version>3.0.0version>
        dependency>
  1. 编写代码
package com.atguigu.bigdata.spark.streaming

import java.util.Random

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.{InputDStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming04_Kafka {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // 定义 Kafka 参数
        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )

        // 工具类KafkaUtils读取Kafka数据
        val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
        )
        kafkaDataDS.map(_.value()).print()


        ssc.start()
        ssc.awaitTermination()
    }
}
  1. kafka创建top队列
# 查看队列
bin/kafka-topics.sh --bootstrap-server linux1:9092 --list
# 创建atguiguNew对垒
bin/kafka-topics.sh --bootstrap-server linux1:9092 --create -topic atguiguNew --partitions 3 --replication-factor 2
bin/kafka-topics.sh --bootstrap-server linux1:9092 --list
# 消费数据 然后运行上面程序 用下面命令生产数据
bin/kafka-console-producer.sh --broker-list linux1:9092 --topic atguiguNew

第三节 DStream转换和输出关闭

  1. DStream 上的操作与 RDD 的类似,分为Transformations(转换)和Output Operations(输出)两种,此外转换操作中还有一些比较特殊的原语,如:updateStateByKey()、transform()以及各种Window 相关的原语。

3.1 无状态转化操作

  1. 无状态转化操作就是把简单的RDD 转化操作应用到每个批次上,也就是转化DStream 中的每一个RDD。部分无状态转化操作列在了下表中。注意,针对键值对的DStream 转化操作(比如reduceByKey())要添加import StreamingContext._才能在 Scala 中使用。
    第七课 大数据技术之Spark-SparkStreaming_第7张图片
  2. 需要记住的是,尽管这些函数看起来像作用在整个流上一样,但事实上每个DStream 在内部是由许多RDD(批次)组成,且无状态转化操作是分别应用到每个 RDD 上的。例如:reduceByKey()会归约每个时间区间中的数据,但不会归约不同区间之间的数据。

3.1.1 Transform

  1. Transform 允许 DStream 上执行任意的RDD-to-RDD 函数。即使这些函数并没有在DStream 的 API 中暴露出来,通过该函数可以方便的扩展 Spark API。该函数每一批次调度一次。其实也就是对 DStream 中的 RDD 应用转换
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming06_State_Transform {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val lines = ssc.socketTextStream("localhost", 9999)

        // transform方法可以将底层RDD获取到后进行操作
        // 1. DStream功能不完善
        // 2. 需要代码周期性的执行

        // Code : Driver端
        val newDS: DStream[String] = lines.transform(
            rdd => {
                // Code : Driver端,(周期性执行)
                rdd.map(
                    str => {
                        // Code : Executor端
                        str
                    }
                )
            }
        )
        // Code : Driver端
        val newDS1: DStream[String] = lines.map(
            data => {
                // Code : Executor端
                data
            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
}

3.1.2 join

  1. 两个流之间的join 需要两个流的批次大小一致,这样才能做到同时触发计算。计算过程就是对当前批次的两个流中各自的RDD 进行 join,与两个 RDD 的 join 效果相同。
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming06_State_Join {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(5))

        val data9999 = ssc.socketTextStream("localhost", 9999)
        val data8888 = ssc.socketTextStream("localhost", 8888)

        val map9999: DStream[(String, Int)] = data9999.map((_,9))
        val map8888: DStream[(String, Int)] = data8888.map((_,8))

        // 所谓的DStream的Join操作,其实就是两个RDD的join
        val joinDS: DStream[(String, (Int, Int))] = map9999.join(map8888)

        joinDS.print()

        ssc.start()
        ssc.awaitTermination()
    }
}

3.2 有状态转化操作

3.2.1 UpdateStateByKey

  1. UpdateStateByKey 原语用于记录历史记录,有时,我们需要在 DStream 中跨批次维护状态(例如流计算中累加wordcount)。针对这种情况,updateStateByKey()为我们提供了对一个状态变量的访问,用于键值对形式的 DStream。给定一个由(键,事件)对构成的 DStream,并传递一个指定如何根据新的事件更新每个键对应状态的函数,它可以构建出一个新的 DStream,其内部数据为(键,状态) 对。
  2. updateStateByKey() 的结果会是一个新的DStream,其内部的RDD 序列是由每个时间区间对应的(键,状态)对组成的。
  3. updateStateByKey 操作使得我们可以在用新信息进行更新时保持任意的状态。为使用这个功能,需要做下面两步:
    • 定义状态,状态可以是一个任意的数据类型。
    • 定义状态更新函数,用此函数阐明如何使用之前的状态和来自输入流的新值对状态进行更新。
  4. 使用 updateStateByKey 需要对检查点目录进行配置,会使用检查点来保存状态。更新版的wordcount
package com.atguigu.bigdata.spark.streaming

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming05_State {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))
        ssc.checkpoint("cp")

        // 无状态数据操作,只对当前的采集周期内的数据进行处理
        // 在某些场合下,需要保留数据统计结果(状态),实现数据的汇总
        // 使用有状态操作时,需要设定检查点路径
        val datas = ssc.socketTextStream("localhost", 9999)

        val wordToOne = datas.map((_,1))

        //val wordToCount = wordToOne.reduceByKey(_+_)

        // updateStateByKey:根据key对数据的状态进行更新
        // 传递的参数中含有两个值
        // 第一个值表示相同的key的value数据
        // 第二个值表示缓存区相同key的value数据
        val state = wordToOne.updateStateByKey(
            ( seq:Seq[Int], buff:Option[Int] ) => {
                val newCount = buff.getOrElse(0) + seq.sum
                Option(newCount)
            }
        )

        state.print()

        ssc.start()
        ssc.awaitTermination()
    }

}
  1. 启动程序并向 9999 端口发送数据
nc -lp 9999 

3.2.2 WindowOperations

  1. Window Operations 可以设置窗口的大小和滑动窗口的间隔来动态的获取当前Steaming 的允许状态。所有基于窗口的操作都需要两个参数,分别为窗口时长以及滑动步长
    • 窗口时长:计算内容的时间范围;
    • 滑动步长:隔多久触发一次计算。
    • 注意:这两者都必须为采集周期大小的整数倍。
  2. WordCount 第三版:3 秒一个批次,窗口 12 秒,滑步 6 秒。关于Window 的操作还有如下方法:
    • window(windowLength, slideInterval): 基于对源DStream 窗化的批次进行计算返回一个新的Dstream;
    • countByWindow(windowLength, slideInterval): 返回一个滑动窗口计数流中的元素个数;
    • reduceByWindow(func, windowLength, slideInterval): 通过使用自定义函数整合滑动区间流元素来创建一个新的单元素流;
    • reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]): 当在一个(K,V) 对的DStream 上调用此函数,会返回一个新(K,V)对的 DStream,此处通过对滑动窗口中批次数据使用 reduce 函数来整合每个 key 的 value 值。
    • reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks]): 这个函数是上述函数的变化版本,每个窗口的 reduce 值都是通过用前一个窗的 reduce 值来递增计算。通过 reduce 进入到滑动窗口数据并”反向 reduce”离开窗口的旧数据来实现这个操作。一个例子是随着窗口滑动对keys 的“加”“减”计数。通过前边介绍可以想到,这个函数只适用于”可逆的 reduce 函数”,也就是这些 reduce 函数有相应的”反 reduce”函数(以参数 invFunc 形式传入)。如前述函数,reduce 任务的数量通过可选参数来配置。
    • countByWindow()和countByValueAndWindow()作为对数据进行计数操作的简写。countByWindow()返回一个表示每个窗口中元素个数的 DStream,而 countByValueAndWindow() 返回的 DStream 则包含窗口中每个值的个数。
      第七课 大数据技术之Spark-SparkStreaming_第8张图片
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming06_State_Window {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val lines = ssc.socketTextStream("localhost", 9999)
        val wordToOne = lines.map((_,1))

        // 窗口的范围应该是采集周期的整数倍
        // 窗口可以滑动的,但是默认情况下,一个采集周期进行滑动
        // 这样的话,可能会出现重复数据的计算,为了避免这种情况,可以改变滑动的滑动(步长)
        val windowDS: DStream[(String, Int)] = wordToOne.window(Seconds(6), Seconds(6))

        val wordToCount = windowDS.reduceByKey(_+_)

        wordToCount.print()

        ssc.start()
        ssc.awaitTermination()
    }
}
  1. reduceByKeyAndWindow案例。当窗口范围比较大,但是滑动幅度比较小,那么可以采用增加数据和删除数据的方式,无需重复计算,提升性能。
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming06_State_Window1 {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))
        ssc.checkpoint("cp")

        val lines = ssc.socketTextStream("localhost", 9999)
        val wordToOne = lines.map((_,1))

        // reduceByKeyAndWindow : 当窗口范围比较大,但是滑动幅度比较小,那么可以采用增加数据和删除数据的方式
        // 无需重复计算,提升性能。
        val windowDS: DStream[(String, Int)] =
            wordToOne.reduceByKeyAndWindow(
                (x:Int, y:Int) => { x + y},
                (x:Int, y:Int) => {x - y},
                Seconds(9), Seconds(3))

        windowDS.print()

        ssc.start()
        ssc.awaitTermination()
    }
}

3.3 DStream输出

  1. 输出操作指定了对流数据经转化操作得到的数据所要执行的操作(例如把结果推入外部数据库或输出到屏幕上)。与RDD 中的惰性求值类似,如果一个 DStream 及其派生出的DStream 都没有被执行输出操作,那么这些DStream 就都不会被求值。如果 StreamingContext 中没有设定输出操作,整个context 就都不会启动。输出操作如下:
    • print():在运行流程序的驱动结点上打印DStream 中每一批次数据的最开始 10 个元素。这用于开发和调试。在 Python API 中,同样的操作叫 print()。
    • saveAsTextFiles(prefix, [suffix]):以 text 文件形式存储这个 DStream 的内容。每一批次的存储文件名基于参数中的 prefix 和 suffix。”prefix-Time_IN_MS[.suffix]”。
    • saveAsObjectFiles(prefix, [suffix]):以 Java 对象序列化的方式将 Stream 中的数据保存为SequenceFiles . 每一批次的存储文件名基于参数中的为"prefix-TIME_IN_MS[.suffix]". Python 中目前不可用。
    • saveAsHadoopFiles(prefix, [suffix]):将 Stream 中的数据保存为 Hadoop files. 每一批次的存储文件名基于参数中的为"prefix-TIME_IN_MS[.suffix]"。Python API 中目前不可用。
    • foreachRDD(func):这是最通用的输出操作,即将函数 func 用于产生于 stream 的每一个RDD。其中参数传入的函数 func 应该实现将每一个RDD 中数据推送到外部系统,如将RDD 存入文件或者通过网络将其写入数据库。
  2. 通用的输出操作foreachRDD(),它用来对DStream 中的 RDD 运行任意计算。这和 transform() 有些类似,都可以让我们访问任意RDD。在 foreachRDD()中,可以重用我们在 Spark 中实现的所有行动操作。比如,常见的用例之一是把数据写到诸如 MySQL 的外部数据库中。
  3. 注意:
    • 连接不能写在 driver 层面(序列化)
    • 如果写在 foreach 则每个 RDD 中的每一条数据都创建,得不偿失;
    • 增加 foreachPartition,在分区创建(获取)。
  4. SparkStreaming如何没有输出操作,那么会提示错误
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming07_Output {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))
        ssc.checkpoint("cp")

        val lines = ssc.socketTextStream("localhost", 9999)
        val wordToOne = lines.map((_,1))

        val windowDS: DStream[(String, Int)] =
            wordToOne.reduceByKeyAndWindow(
                (x:Int, y:Int) => { x + y},
                (x:Int, y:Int) => {x - y},
                Seconds(9), Seconds(3))
        // SparkStreaming如何没有输出操作,那么会提示错误
        //windowDS.print()

        ssc.start()
        ssc.awaitTermination()
    }
}
  1. foreachRDD输出不会出现时间戳
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming07_Output1 {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))
        ssc.checkpoint("cp")

        val lines = ssc.socketTextStream("localhost", 9999)
        val wordToOne = lines.map((_,1))
        
        val windowDS: DStream[(String, Int)] =
            wordToOne.reduceByKeyAndWindow(
                (x:Int, y:Int) => { x + y},
                (x:Int, y:Int) => {x - y},
                Seconds(9), Seconds(3))

        // foreachRDD不会出现时间戳
        windowDS.foreachRDD(
            rdd => {

            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
}

3.4 优雅关闭

  1. 流式任务需要 7*24 小时执行,但是有时涉及到升级代码需要主动停止程序,但是分布式程序,没办法做到一个个进程去杀死,所有配置优雅的关闭就显得至关重要了。使用外部文件系统来控制内部程序关闭。
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext, StreamingContextState}

object SparkStreaming08_Close {

    def main(args: Array[String]): Unit = {

        /*
           线程的关闭:
           val thread = new Thread()
           thread.start()

           thread.stop(); // 强制关闭

         */

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val lines = ssc.socketTextStream("localhost", 9999)
        val wordToOne = lines.map((_,1))

        wordToOne.print()
        ssc.start()

        // 如果想要关闭采集器,那么需要创建新的线程
        // 而且需要在第三方程序中增加关闭状态
        new Thread(
            new Runnable {
                override def run(): Unit = {
                    // 优雅地关闭
                    // 计算节点不在接收新的数据,而是将现有的数据处理完毕,然后关闭
                    // Mysql : Table(stopSpark) => Row => data
                    // Redis : Data(K-V)
                    // ZK    : /stopSpark
                    // HDFS  : /stopSpark
                    /*
                    while ( true ) {
                        if (true) {
                            // 获取SparkStreaming状态
                            val state: StreamingContextState = ssc.getState()
                            if ( state == StreamingContextState.ACTIVE ) {
                                ssc.stop(true, true)
                            }
                        }
                        Thread.sleep(5000)
                    }
                     */

                    // 联系测试代码
                    Thread.sleep(5000)
                    val state: StreamingContextState = ssc.getState()
                    if ( state == StreamingContextState.ACTIVE ) {
                        ssc.stop(true, true)
                    }
                    System.exit(0)
                }
            }
        ).start()

        ssc.awaitTermination() // block 阻塞main线程
    }
}
  1. 从检查点恢复数据
package com.atguigu.bigdata.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext, StreamingContextState}

object SparkStreaming09_Resume {

    def main(args: Array[String]): Unit = {

        val ssc = StreamingContext.getActiveOrCreate("cp", ()=>{
            val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
            val ssc = new StreamingContext(sparkConf, Seconds(3))

            val lines = ssc.socketTextStream("localhost", 9999)
            val wordToOne = lines.map((_,1))

            wordToOne.print()

            ssc
        })

        ssc.checkpoint("cp")

        ssc.start()
        ssc.awaitTermination() // block 阻塞main线程
    }
}

第四节 SparkStreaming案例实操

4.1 环境准备

  1. pom 文件
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.12artifactId>
            <version>3.0.0version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming_2.12artifactId>
            <version>3.0.0version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming-kafka-0-10_2.12artifactId>
            <version>3.0.0version>
        dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.coregroupId>
            <artifactId>jackson-coreartifactId>
            <version>2.10.1version>
        dependency>
        
        <dependency>
            <groupId>com.alibabagroupId>
            <artifactId>druidartifactId>
            <version>1.1.10version>
        dependency>
        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.27version>
        dependency>
  1. 连接配置
#jdbc 配置
jdbc.datasource.size=10 jdbc.url=jdbc:mysql://linux1:3306/spark2020?useUnicode=true&characterEncoding=utf 8&rewriteBatchedStatements=true
jdbc.user=root jdbc.password=000000

# Kafka 配置
kafka.broker.list=linux1:9092,linux2:9092,linux3:9092
  1. 生成模拟数据
package com.atguigu.bigdata.spark.streaming

import java.util.{Properties, Random}

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object SparkStreaming10_MockData {

    def main(args: Array[String]): Unit = {

        // 生成模拟数据
        // 格式 :timestamp area city userid adid
        // 含义: 时间戳   区域  城市 用户 广告

        // Application => Kafka => SparkStreaming => Analysis
        val prop = new Properties()
        // 添加配置
        prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux1:9092")
        prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
        prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
        val producer = new KafkaProducer[String, String](prop)

        while ( true ) {

            mockdata().foreach(
                data => {
                    // 向Kafka中生成数据
                    val record = new ProducerRecord[String, String]("atguiguNew", data)
                    producer.send(record)
                    println(data)
                }
            )

            Thread.sleep(2000)
        }

    }
    def mockdata() = {
        val list = ListBuffer[String]()
        val areaList = ListBuffer[String]("华北", "华东", "华南")
        val cityList = ListBuffer[String]("北京", "上海", "深圳")

        for ( i <- 1 to new Random().nextInt(50) ) {

            val area = areaList(new Random().nextInt(3))
            val city = cityList(new Random().nextInt(3))
            var userid = new Random().nextInt(6) + 1
            var adid = new Random().nextInt(6) + 1

            list.append(s"${System.currentTimeMillis()} ${area} ${city} ${userid} ${adid}")
        }

        list
    }
}

4.2 案例需求一

  1. 需求一:广告黑名单。实现实时的动态黑名单机制:将每天对某个广告点击超过 100 次的用户拉黑。注:黑名单保存到MySQL 中。
  2. 思路分析
    • 读取Kafka 数据之后,并对 MySQL 中存储的黑名单数据做校验;
    • 校验通过则对给用户点击广告次数累加一并存入MySQL;
    • 在存入MySQL 之后对数据做校验,如果单日超过 100 次则将该用户加入黑名单。
  3. MySQL 建表,创建库 spark2020,存放黑名单用户的表CREATE TABLE black_list (userid CHAR(1) PRIMARY KEY);, 存放单日各用户点击每个广告的次数
package com.atguigu.bigdata.spark.streaming

import java.sql.ResultSet
import java.text.SimpleDateFormat

import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object SparkStreaming11_Req1_BlackList1 {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )

        val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
        )
        val adClickData = kafkaDataDS.map(
            kafkaData => {
                val data = kafkaData.value()
                val datas = data.split(" ")
                AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
            }
        )

        val ds = adClickData.transform(
            rdd => {
                // TODO 通过JDBC周期性获取黑名单数据
                val blackList = ListBuffer[String]()

                val conn = JDBCUtil.getConnection
                val pstat = conn.prepareStatement("select userid from black_list")

                val rs: ResultSet = pstat.executeQuery()
                while ( rs.next() ) {
                    blackList.append(rs.getString(1))
                }

                rs.close()
                pstat.close()
                conn.close()

                // TODO 判断点击用户是否在黑名单中
                val filterRDD = rdd.filter(
                    data => {
                        !blackList.contains(data.user)
                    }
                )

                // TODO 如果用户不在黑名单中,那么进行统计数量(每个采集周期)
                filterRDD.map(
                    data => {
                        val sdf = new SimpleDateFormat("yyyy-MM-dd")
                        val day = sdf.format(new java.util.Date( data.ts.toLong ))
                        val user = data.user
                        val ad = data.ad

                        (( day, user, ad ), 1) // (word, count)
                    }
                ).reduceByKey(_+_)
            }
        )

        ds.foreachRDD(
            rdd => {
                // rdd. foreach方法会每一条数据创建连接
                // foreach方法是RDD的算子,算子之外的代码是在Driver端执行,算子内的代码是在Executor端执行
                // 这样就会涉及闭包操作,Driver端的数据就需要传递到Executor端,需要将数据进行序列化
                // 数据库的连接对象是不能序列化的。

                // RDD提供了一个算子可以有效提升效率 : foreachPartition
                // 可以一个分区创建一个连接对象,这样可以大幅度减少连接对象的数量,提升效率
                rdd.foreachPartition(iter => {
                        val conn = JDBCUtil.getConnection
                        iter.foreach{
                            case ( ( day, user, ad ), count ) => {

                            }
                        }
                        conn.close()
                    }
                )

                rdd.foreach{
                    case ( ( day, user, ad ), count ) => {
                        println(s"${day} ${user} ${ad} ${count}")
                        if ( count >= 30 ) {
                            // TODO 如果统计数量超过点击阈值(30),那么将用户拉入到黑名单
                            val conn = JDBCUtil.getConnection
                            val sql = """
                                        |insert into black_list (userid) values (?)
                                        |on DUPLICATE KEY
                                        |UPDATE userid = ?
                                      """.stripMargin
                            JDBCUtil.executeUpdate(conn, sql, Array( user, user ))
                            conn.close()
                        } else {
                            // TODO 如果没有超过阈值,那么需要将当天的广告点击数量进行更新。
                            val conn = JDBCUtil.getConnection
                            val sql = """
                                        | select
                                        |     *
                                        | from user_ad_count
                                        | where dt = ? and userid = ? and adid = ?
                                      """.stripMargin
                            val flg = JDBCUtil.isExist(conn, sql, Array( day, user, ad ))

                            // 查询统计表数据
                            if ( flg ) {
                                // 如果存在数据,那么更新
                                val sql1 = """
                                             | update user_ad_count
                                             | set count = count + ?
                                             | where dt = ? and userid = ? and adid = ?
                                           """.stripMargin
                                JDBCUtil.executeUpdate(conn, sql1, Array(count, day, user, ad))
                                // TODO 判断更新后的点击数据是否超过阈值,如果超过,那么将用户拉入到黑名单。
                                val sql2 = """
                                             |select
                                             |    *
                                             |from user_ad_count
                                             |where dt = ? and userid = ? and adid = ? and count >= 30
                                           """.stripMargin
                                val flg1 = JDBCUtil.isExist(conn, sql2, Array( day, user, ad ))
                                if ( flg1 ) {
                                    val sql3 = """
                                                |insert into black_list (userid) values (?)
                                                |on DUPLICATE KEY
                                                |UPDATE userid = ?
                                              """.stripMargin
                                    JDBCUtil.executeUpdate(conn, sql3, Array( user, user ))
                                }
                            } else {
                                val sql4 = """
                                             | insert into user_ad_count ( dt, userid, adid, count ) values ( ?, ?, ?, ? )
                                           """.stripMargin
                                JDBCUtil.executeUpdate(conn, sql4, Array( day, user, ad, count ))
                            }
                            conn.close()
                        }
                    }
                }
            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    // 广告点击数据
    case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}

4.2 案例需求二

  1. 广告点击量实时统计描述:实时统计每天各地区各城市各广告的点击总流量,并将其存入MySQL。
  2. 思路分析
    • 单个批次内对数据进行按照天维度的聚合统计;
    • 结合 MySQL 数据跟当前批次数据更新原有的数据。
package com.atguigu.bigdata.spark.streaming

import java.text.SimpleDateFormat

import com.atguigu.bigdata.spark.streaming.SparkStreaming11_Req1_BlackList.AdClickData
import com.atguigu.bigdata.spark.util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming12_Req2 {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )

        val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
        )
        val adClickData = kafkaDataDS.map(
            kafkaData => {
                val data = kafkaData.value()
                val datas = data.split(" ")
                AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
            }
        )

        val reduceDS = adClickData.map(
            data => {
                val sdf = new SimpleDateFormat("yyyy-MM-dd")
                val day = sdf.format(new java.util.Date( data.ts.toLong ))
                val area = data.area
                val city = data.city
                val ad = data.ad

                ( ( day, area, city, ad ), 1 )
            }
        ).reduceByKey(_+_)

        reduceDS.foreachRDD(
            rdd => {
                rdd.foreachPartition(
                    iter => {
                        val conn = JDBCUtil.getConnection
                        val pstat = conn.prepareStatement(
                            """
                              | insert into area_city_ad_count ( dt, area, city, adid, count )
                              | values ( ?, ?, ?, ?, ? )
                              | on DUPLICATE KEY
                              | UPDATE count = count + ?
                            """.stripMargin)
                        iter.foreach{
                            case ( ( day, area, city, ad ), sum ) => {
                                pstat.setString(1,day )
                                pstat.setString(2,area )
                                pstat.setString(3, city)
                                pstat.setString(4, ad)
                                pstat.setInt(5, sum)
                                pstat.setInt(6,sum )
                                pstat.executeUpdate()
                            }
                        }
                        pstat.close()
                        conn.close()
                    }
                )
            }
        )


        ssc.start()
        ssc.awaitTermination()
    }
    // 广告点击数据
    case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}

4.3 案例需求三

  1. 最近一小时广告点击量结果展示:
1:List [15:50->10,15:51->25,15:52->30]
2:List [15:50->10,15:51->25,15:52->30]
3:List [15:50->10,15:51->25,15:52->30]
  1. 思路分析
    • 开窗确定时间范围;
    • 在窗口内将数据转换数据结构为((adid,hm),count); 3)按照广告 id 进行分组处理,组内按照时分排序。
package com.atguigu.bigdata.spark.streaming

import java.io.{File, FileWriter, PrintWriter}
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object SparkStreaming13_Req31 {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStreaming")
        val ssc = new StreamingContext(sparkConf, Seconds(5))

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )

        val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguiguNew"), kafkaPara)
        )
        val adClickData = kafkaDataDS.map(
            kafkaData => {
                val data = kafkaData.value()
                val datas = data.split(" ")
                AdClickData(datas(0),datas(1),datas(2),datas(3),datas(4))
            }
        )

        // 最近一分钟,每10秒计算一次
        // 12:01 => 12:00
        // 12:11 => 12:10
        // 12:19 => 12:10
        // 12:25 => 12:20
        // 12:59 => 12:50

        // 55 => 50, 49 => 40, 32 => 30
        // 55 / 10 * 10 => 50
        // 49 / 10 * 10 => 40
        // 32 / 10 * 10 => 30

        // 这里涉及窗口的计算
        val reduceDS = adClickData.map(
            data => {
                val ts = data.ts.toLong
                val newTS = ts / 10000 * 10000
                ( newTS, 1 )
            }
        ).reduceByKeyAndWindow((x:Int,y:Int)=>{x+y}, Seconds(60), Seconds(10))

        //reduceDS.print()
        reduceDS.foreachRDD(
            rdd => {
                val list = ListBuffer[String]()

                val datas: Array[(Long, Int)] = rdd.sortByKey(true).collect()
                datas.foreach{
                    case ( time, cnt ) => {

                        val timeString = new SimpleDateFormat("mm:ss").format(new java.util.Date(time.toLong))

                        list.append(s"""{"xtime":"${timeString}", "yval":"${cnt}"}""")
                    }
                }

                // 输出文件
                val out = new PrintWriter(new FileWriter(new File("D:\\mineworkspace\\idea\\classes\\atguigu-classes\\datas\\adclick\\adclick.json")))
                out.println("["+list.mkString(",")+"]")
                out.flush()
                out.close()
            }
        )


        ssc.start()
        ssc.awaitTermination()
    }
    // 广告点击数据
    case class AdClickData( ts:String, area:String, city:String, user:String, ad:String )
}

RealTimeApp

—————————————————————————————
//1.创建 SparkConf
val sparkConf: SparkConf = new SparkConf().setMaster(“local[*]”).setAppName(“RealTimeApp”)

//2.创建 StreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(3))

//3.读取 Kafka 数据 1583288137305 华南 深圳 4 3 val topic: String =
PropertiesUtil.load(“config.properties”).getProperty(“kafka.topic”) val kafkaDStream: InputDStream[ConsumerRecord[String, String]] =
MyKafkaUtil.getKafkaStream(topic, ssc)

//4.将每一行数据转换为样例类对象
val adsLogDStream: DStream[Ads_log] = kafkaDStream.map(record => {
//a.取出 value 并按照" “切分
val arr: Array[String] = record.value().split(” ")
//b.封装为样例类对象
Ads_log(arr(0).toLong, arr(1), arr(2), arr(3), arr(4))
})

//5.根据 MySQL 中的黑名单表进行数据过滤
val filterAdsLogDStream: DStream[Ads_log] = adsLogDStream.filter(adsLog => {
//查询 MySQL,查看当前用户是否存在。
val connection: Connection = JdbcUtil.getConnection
val bool: Boolean = JdbcUtil.isExist(connection, “select * from black_list where userid=?”, Array(adsLog.userid))
connection.close()
!bool
})

filterAdsLogDStream.cache()

//6.对没有被加入黑名单的用户统计当前批次单日各个用户对各个广告点击的总次数,
// 并更新至 MySQL
// 之后查询更新之后的数据,判断是否超过 100 次。
// 如果超过则将给用户加入黑名单
BlackListHandler.saveBlackListToMysql(filterAdsLogDStream)

//7.统计每天各大区各个城市广告点击总数并保存至 MySQL 中
DateAreaCityAdCountHandler.saveDateAreaCityAdCountToMysql(filterAdsLogDStream)

//8.统计最近一小时(2 分钟)广告分时点击总数
val adToHmCountListDStream: DStream[(String, List[(String, Long)])] = LastHourAdCountHandler.getAdHourMintToCount(filterAdsLogDStream)

//9.打印adToHmCountListDStream.print()

//10.开启任务ssc.start() ssc.awaitTermination()
}
}

你可能感兴趣的:(spark)