- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- flutter pigeon gomobile 插件中使用go工具类
yujunlong3919
fluttergolangswiftkotlin
文章目录为什么flutter要用go写工具类1.下载pigeon插件模版2.编写go代码3.生成greeting.aar,Greeting.xcframework4.ios5.android6.dart中使用为什么flutter要用go写工具类在Flutter应用中,有些场景涉及到大量的计算,比如复杂的加密算法、数据压缩/解压缩或者图形处理中的数学计算等1.下载pigeon插件模版base_plu
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- LLM与知识图谱融合:智能运维知识库构建
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,IT运维管理面临着越来越大的挑战。海量的设备、复杂的网络环境、日益增长的数据量,使得传统的运维方式难以满足需求。为了提高运维效率和质量,智能运维应运而生。智能运维的核心是将人工智能技术应用于运维领域,通过机器学习、深度学习等算法,实现自动化、智能化的运维管理。其中,大语言模型(LLM)和知识图谱是两个重要的技术方向。LLM能够理解和生成自然语言,可以用于构建智能
- LQB(4)-python-DFS搜索
AAA顶置摸鱼
蓝桥杯python组深度优先算法python蓝桥杯
前言DFS即深度优先搜索(Depth-FirstSearch),是一种用于遍历或搜索树或图的算法,有三种核心的应用场景(基础遍历、回溯、剪枝)。一、DFS-基础遍历1.核心原理深度优先搜索(DFS)是一种遍历或搜索树/图的算法,优先沿着一条路径尽可能深入,直到无法继续再回溯。实现方式:递归:隐式利用系统调用栈。栈模拟:显式使用栈数据结构。2.代码实现(1)递归实现(树结构)classTreeNod
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 【分布式理论12】事务协调者高可用:分布式选举算法
roman_日积跬步-终至千里
分布式架构分布式算法
文章目录一、分布式系统中事务协调的问题二、分布式选举算法1.Bully算法2.Raft算法3.ZAB算法三、小结与比较一、分布式系统中事务协调的问题在分布式系统中,常常有多个节点(应用)共同处理不同的事务和资源。前文【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法【分布式理论10】分布式协同:分布式互斥算法最佳实现:分布式锁的原理与实现【分布式理论11】分布式协同之分布式事务中介绍了分布式
- 设计模式-模板方法实现
阿绵
设计模式java开发语言
文章目录模式结构模式特点示例代码输出结果关键点解析模式的优缺点使用场景总结模板方法模式(TemplateMethodPattern)是一种行为型设计模式,它定义了一个操作中的算法骨架,而将某些步骤的实现延迟到子类中。通过这种方式,模板方法模式可以让子类在不改变算法结构的情况下,重新定义算法中的某些步骤模式结构模板方法模式的结构包括以下几个关键部分:抽象类(AbstractClass):定义算法的骨
- 数据库基础以及 MySQL 知识点
阿绵
计算机基础数据库mysql
文章目录1、基本概念2、主键和外键的区别2.1、使用外键的优劣3、数据库范式4、drop、delete与truncate区别?5、MySQL1、基础概念2、存储引擎2.1、InnoDB和MyISAM区别2.2、InnoDB如何保持事务的四大特性(实现事务的原理)3、锁机制与InnoDB锁算法3.1、表级锁和行级锁对比4、事务4.1、ACID特性4.2、并发事务带来的问题4.3、事务隔离级别1、基本
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- 基于Python的搜索引擎的设计与实现
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
搜索引擎,Python,爬虫,自然语言处理,信息检索,索引,算法,数据库1.背景介绍在信息爆炸的时代,海量数据无处不在,高效地获取所需信息变得至关重要。搜索引擎作为信息获取的桥梁,扮演着不可或缺的角色。传统的搜索引擎往往依赖于庞大的服务器集群和复杂的算法,对资源消耗较大,且难以满足个性化搜索需求。基于Python的搜索引擎设计,则凭借Python语言的易学易用、丰富的第三方库和强大的社区支持,为开
- 27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?
程序员yt
java机器学习开发语言
今天给大家分享的是一位粉丝的提问,27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:211建筑本科,22年毕业后gap一年转码去了英国读的QS100的it的水硕(24年12月份毕业),转码后对就业形势认知不足,时间全花在课业上,八股文和算法准备的不充足,秋招算是惨败。读研
- 分布式理论与分布式算法
红衣女妖仙
springcloud分布式分布式定理分布式算法
分布式定义、主要目标、优缺点、与集中式区别;分布式CAP定理、PACELC理论、BASE理论的核心观点、应用场景等;分布式算法如Paxos算法、Raft算法、Gossip算法、两阶段提交(2PC)、三阶段提交(3PC)、一致性哈希算法、Bully算法、Chord算法等算法的核心思想、角色、算法过程、特性、应用场景和变种等。——2025年2月3日甲辰年正月初六立春目录1分布式1.1分布式定义1.
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 【c++】容器:vector、list、map
大姨妈V
c++【c++从入门到精通】学习笔记
【c++】容器1.容器2.顺序容器3.向量4.双向链表5.关联容器6.映射参考:《c++从入门到精通》人民邮电出版社标准模板库STL的c++最有特色、最实用的部分之一。标准模板库包含了容器类、迭代器和算法三部分。容器:容器就是可以用于存放各种类型数据的数据结构。迭代器:迭代器可依次存取容器中的元素,在C++中称迭代器为指针,它们提供了访问容器、序列中每个元素的方法。算法:是用来操作容器中的元素的函
- STL-vector,set,string,map,queue,priority_queue,stack,pair算法笔记
cloudless_sky
STLc++stl
STL:standardtemplatelibrary标准模板库,封装了很多实用的容器。(一)vectorvector是一个容器。是个类。底层数据结构是数组。vector:向量,变长数组,即“长度根据需要而自动改变的数组”。使用前提:#includeusingnamespacestd;1、vector定义vectorname;以上是长度可以根据需要变化的一位数组,typename可以是任何基本类型
- Java开发实习面试笔试题(含答案)
小钊(求职中)
java面试开发语言springspringbootmaventomcat
在广州一家中大公司面试(BOSS标注是1000-9999人,薪资2-3k),招聘上写着Java开发,基本没有标注前端要求,但是到场知道是前后端分离人不分离。开始先让你做笔试(12道问答+4道SQL题),接着面试也是八股文之类的,没有问项目,没有做算法,现分享笔试和面试题目给大家做参考。(基础的没复习忘了不会,只会几道感觉已经寄了,最重要的是前端基本不会)一、笔试内容1.Java有哪些数据类型,什么
- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- ranges::set_intersection set_union set_difference set_symmetric_difference
大树青云
C++20C++set_union
std::ranges::set_intersection:是C++20引入的一个算法,用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。std::ranges::set_intersection用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。注意事项输入范围必须已排序。目标范围必须有足够空间存储交集结果。交集结果默认按升序排列。若元素重复,交集次数取两范
- 深度优先探索
^O^凡人多烦事
深度优先算法
DFS:时间复杂度:一位数组:O(n)二维数组+标记:O(n^2),有时候还可能使O(2^n),总而言之DFS的时间复杂度比较高。(个人认为)深度优先搜索算法(DFS)原理:深度优先搜索(DepthFirstSearch,DFS)是一种用于遍历或搜索树或图的算法。该方法从根节点(选择任意一个顶点作为起始节点,在无向图中适用)开始,尽可能深地沿着每条分支进行探索直到不能再前进为止;之后回退并重复这一
- 常用的高性能计算工具有哪些
这题有点难度
人工智能学习
在当今数字化时代,高性能计算(HPC)已成为推动科学、工程、技术以及商业创新的核心力量。无论是模拟宇宙的起源、设计新型航空器,还是训练复杂的人工智能模型,HPC都扮演着不可或缺的角色。本文将深入探讨高性能计算的定义、其背后的强大工具,以及它们如何助力各领域的突破性发展。一、高性能计算:定义与意义高性能计算(HPC)是一种利用超级计算机或大规模集群来处理复杂计算任务的技术。它通过并行计算和优化算法,
- 关于滑动窗口算法--最小替换字串长度
幼儿园口算大王
算法java数据结构滑动窗口
个人觉得日常遇到的关于滑动窗口的算法题主要分两种:固定窗口大小的滑动窗口在固定窗口大小的滑动窗口问题中,窗口的大小是预先定义好的,不会改变。这种类型的问题是相对简单的,因为一旦确定了窗口的大小,就可以直接遍历数组或列表,每次移动窗口一个元素的位置。常见的问题包括:最大/最小子数组和:给定一个数组和一个固定大小的窗口,找到所有可能的窗口的最大/最小和。窗口内元素的统计:例如,统计窗口内奇数或偶数元素
- 只能说算法做题全凭运气
幼儿园口算大王
算法java开发语言
问题描述在一款多人游戏中,每局比赛需要多个玩家参与。如果发现两名玩家至少一起玩过两局比赛,则可以认为这两名玩家互为队友。现在你有一份玩家(通过玩家ID标识)和比赛局次(通过比赛ID标识)的历史记录表,目标是帮助某位指定玩家找到所有符合条件的队友。例如样例1,已知以下比赛历史记录:玩家ID游戏ID11121321243241425253我们需要帮助ID为1的玩家找到所有至少与其一起玩过两次比赛的队友
- 动态规划算法套路解析
xl.liu
算法动态规划
动态规划概述动态规划是一种用于解决最优化问题的算法技术,它通过将复杂的问题分解为更简单的子问题,并利用这些子问题的解来构建原始问题的解。动态规划特别适用于那些拥有最优子结构和重叠子问题特性的问题。所谓最优子结构是指一个问题的最优解可以通过其子问题的最优解组合而成;而重叠子问题则意味着在求解过程中会多次遇到相同的子问题。解题套路框架面对一个动态规划问题时,通常可以遵循以下四个步骤来进行思考与解答:定
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 国密算法SM1 SM2 SM3 SM4 SM9
象话
算法国密算法SM2SM3SM4
一、概述SM1-无具体实现SM1作为一种对称加密算法,由于其算法细节并未公开,且主要在中国国内使用,因此在国际通用的加密库(如BouncyCastle)中并不直接支持SM1算法。SM1算法的具体实现涉及国家密码管理局的规范,通常需要使用国家指定的安全模块(如SSF33、SC1/SC2卡)或通过国家认证的加密硬件/软件产品来实现。不过,如果你有合法授权并且在合规的环境下需要使用SM1算法,可能需要依
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt