代码随想录算法训练营第四十二天-动态规划4|● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

今天只有1道题,属于动态规划的01背包问题的应用。首先理解一下动态规划的01背包问题。推荐一个视频,动态规划DP0-1背包,这是我认为讲得最为通透的。很多讲解动态背包问题的,一上来就画二维表格,遍历背包或者遍历容量,其实本质上,根本就看不懂那个二维表格是什么意思,为什么容量每次都要从0开始遍历。从原理上讲,容量从0开始只是一种假设,为的是让后面的背包如果装东西了,那么背包容量就会减少,再减少了容量后,怎么挑选物品才会使得质量最高,因此需要从0遍历,这些都是起了给后面的递归初始化一个值的作用。

 小偷偷东西,有一个8容量背包,那么他开始从编号4开始偷(也可以从编号1开始偷),他有两种选择,偷或者不偷。如果偷,那么它的背包剩余容量就是8 - 5 = 3;同时产生价值8,如果不偷,则背包容量为8,产生价值为0;接着开始偷第二件物品,也就是编号3,又是一个选择偷与不偷的过程。最后就会生成一棵二叉树,每个叶子节点都是不同选择下的结果,选择最大的叶子节点就是得到最大的价值。

 因此就会产生一个状态转移方程,这个状态转移方程就是一种决策,如果背包容量不够,也就是物品太重,那么它产生的价值就是上次物品决策时的价值,也就是f(k - 1,w),同时剩余容量为w,也就背包的容量没有改变。如果背包容量足够,那么他就面临两种选择,偷和不偷,如果不偷,产生的价值不变,容量不变,如果偷,那么它的总价值就加上这个物品的价值,同时背包容量就相应减少。这时可以看到,背包容量减少后,对应的一个小背包容量,面临的选择是剩下两个物品的决策。这时对应的背包容量和剩下物品中对应获取的最大值在前面的遍历已经有给出了,所以查表就可以得到对应的最大值,也就是这种决策下的产生的最大价值。

其实在引申下去,就是从只有1个物品和只有有限背包容量时,能产生的最大价值。接着有两个物品和有限背包容量时的选择,选择第2个物品后,就回头看剩下的背包容量以及只有1个物品时对应的价值,返回不选择第二件物品和选择了第二件物品的价值的最大值。也就是状态转移方程中的第wk<= w的情况。

 最终的f(4,8)就是我们决策的结果,其余的表格数字只是一个铺垫,都是每个决策产生的最大值,但是最后的f(4,8)才是我们有4个物品,同时背包容量为8的结果。所以里面的关系要搞清楚,表格的其他数字都和我们01背包的题目没有关系,但是它是一个重要的推导过程,他有点类似于遍历所有结果,把决策的结果反应在表格上。可能我讲得确实不够清楚,但是,强烈推荐看视频讲解,从原理上解剖背包问题和决策,真的可以深刻理解这个表格以及整个动态规划的核心。动态规划DP0-1背包。

力扣题目416. 分割等和子集

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
提示:

1 <= nums.length <= 200
1 <= nums[i] <= 100
回到题目:分割等和子集,这个可以看成背包容量为整个集合的和的一半,只要背包正好装满,那么这个背包的价值就是整个集合的一半,背包的和与剩下的子集的和相等,可以返回true。因此在借用这个思想,遍历所有物品,也就是集合里面的元素,从只有1个元素可以选择到所有的元素都可以选择,在这个过程中,只要找到背包满的情况,就能输出true,因为只要选择了这些元素就可以了。
 

class Solution {
    public boolean canPartition(int[] nums) {
        int sum = 0;
        for(int num : nums){
            sum += num;
        }
        if(sum % 2 == 1 || nums.length == 1){
            return false;
        }
        int[][] dp = new int[nums.length][sum / 2 + 1];
        for(int i = 0; i < nums.length; i++){
            dp[i][0] = 0;
        }
        for(int j = 0; j <= sum / 2; j++){
            if(j >= nums[0]){
                dp[0][j] = nums[0];
            }
        }
        for(int i = 1; i < nums.length; i++){
            for(int j = 1; j <= sum / 2; j++){
                if(j >= nums[i]){
                    dp[i][j] = Math.max(dp[i - 1][j] ,dp[i - 1][j - nums[i]] + nums[i]);
                }else{
                    dp[i][j] = dp[i - 1][j];
                }
            }
            //这一步是关键,因为不知道选多少个元素,所以每次添加一个元素进行选择时,就判断一次
            //正好满足条件就可以返回true,否则就再加一个元素,直到加到没有元素可以加后结束遍历返回false
            if(dp[i][sum / 2] == sum / 2){
                return true;
            }
        }
        // for (int i = 0; i < nums.length; i++) {
        //     for (int j = 0; j <= sum / 2; j++) {
        //         System.out.print(dp[i][j]+" ");
        //     }
        //     System.out.println();
        // }
        return false;
        
    }
    
}

你可能感兴趣的:(算法,动态规划)