Big Endian 和 Little Endian 详解

一、Endian的起源

端模式(Endian)的这个词出自JonathanSwift写的《格列佛游记》。这本书根据将鸡蛋敲开的方法不同将所有的人分为两类:从圆头开始将鸡蛋敲开的人被归为BigEndian,从尖头开始将鸡蛋敲开的人被归为LittileEndian。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开。

在各种计算机体系结构中,对于字节、字等的存储机制有所不同,因而引发了计算机通信领域中一个很重要的问题,即通信双方交流的信息单元(比特、字节、字、双字等等)应该以什么样的顺序进行传送。如果不达成一致的规则,通信双方将无法进行正确的编/译码从而导致通信失败。

在计算机业BigEndian和Little Endian也几乎引起一场战争。在计算机业界,Endian表示数据在存储器中的存放顺序。

采用大端方式进行数据存放符合人类的正常思维,而采用小端方式进行数据存放利于计算机处理。

1980年,Danny Cohen在其著名的论文”On Holy Wars and a Plea for Peace”中为了平息这场关于在消息中字节该以什么样的顺序进行传送的争论而引用了该词。该文中,Cohen非常形象贴切地把支持从一个消息序列的最高位开始传送的那伙人叫做Big-Endians,支持从最低位开始传送的相对应地叫做Little-Endians。此后Endian这个词便随着这篇论文而被广为采用。

二、字节序之Little-Endian & Big-Endian

首先,明确一点,咱们接触到的物理单元最小都是字节(byte);因此,无论是big endian,还是little endian,都是针对多个字节的序列而言的;当然,在通信领域中,这里往往是bit,不过原理也是类似的, 稍后我会介绍。

对于字节序列的存储格式,目前有两大阵营,那就是Motorola的PowerPC系列CPU和Intel的x86系列CPU。PowerPC系列采用big endian方式存储数据,而x86系列则采用little endian方式存储数据。那么究竟什么是big endian,什么又是little endian呢?

  • Little-endian:将低序字节存储在起始地址(低位编址)
  • Big-endian:将高序字节存储在起始地址(高位编址), 又叫网络字节序
address big-endian little-endian
0x0000 0x12 0xcd
0x0001 0x34 0xab
0x0002 0xab 0x34
0x0003 0xcd 0x12

每个地址存1个字节(byte),2位16进制数是1个字节(0xFF=1111 1111)

为什么要注意字节序的问题呢?你可能这么问。当然,如果你写的程序只在单机环境下面运行,并且不和别人的程序打交道,那么你完全可以忽略字节序的存在。

但是,如果你的程序要跟别人的程序产生交互呢?在这里我想说说两种语言。C/C++语言编写的程序里数据存储顺序是跟编译平台所在的CPU相关的,而JAVA编写的程序则唯一采用big endian方式来存储数据。

试想,如果你用C/C++语言在x86平台下编写的程序跟别人的JAVA程序互通时会产生什么结果?就拿上面的0x12345678来说,你的程序传递给别人的一个数据,将指向0x12345678的指针传给了JAVA程序,由于JAVA采取big endian方式存储数据,很自然的它会将你的数据翻译为0x78563412。什么?竟然变成另外一个数字了?是的,就是这种后果。因此,在你的C程序传给JAVA程序之前有必要进行字节序的转换工作。

无独有偶,所有网络协议也都是采用big endian的方式来传输数据的。所以有时我们也会把big endian方式称之为网络字节序。当两台采用不同字节序的主机通信时,在发送数据之前都必须经过字节序的转换成为网络字节序后再进行传输。

目前应该little endian是主流,因为在数据类型转换的时候(尤其是指针转换)不用考虑地址问题。

三、比特序(Byte Endian) 之 Little-Endian & Big-Endian

可是有朋友仍然会问,CPU存储一个字节的数据时其字节内的8个比特之间的顺序是否也有big endian和little endian之分?或者说是否有比特序的不同?

实际上,这个比特序是同样存在的。下面以数字0xB4(10110100)用图加以说明。

MSB:Most Significant Bit,在二进制数中属于最高有效位,MSB是最高加权位,与十进制数字中最左边的一位类似。

LSB:Least Significant Bit,在二进制数中意为最低有效位,一般来说,MSB位于二进制数的最左侧,LSB位于二进制数的最右侧。

Big Endian:

msb------->lsb
1 0 1 1 0 1 0 0

Little Endian:

lsb------->msb
0 0 1 0 1 1 0 1

实际上,由于CPU存储数据操作的最小单位是一个字节,其内部的比特序是什么样对我们的程序来说是一个黑盒子。也就是说,你给我一个指向0xB4这个数的指针,对于big endian方式的CPU来说,它是从左往右依次读取这个数的8个比特;而对于little endian方式的CPU来说,则正好相反,是从右往左依次读取这个数的8个比特。而我们的程序通过这个指针访问后得到的数就是0xB4,字节内部的比特序对于程序来说是不可见的,其实这点对于单机上的字节序来说也是一样的。

那可能有人又会问,如果是网络传输呢?会不会出问题?是不是也要通过什么函数转换一下比特序?嗯,这个问题提得很好。假设little endian方式的CPU要传给big endian方式CPU一个字节的话,其本身在传输之前会在本地就读出这个8比特的数,然后再按照网络字节序的顺序来传输这8个比特,这样的话到了接收端不会出现任何问题。而假如要传输一个32比特的数的话,由于这个数在littel endian方存储时占了4个字节,而网络传输是以字节为单位进行的,little endian方的CPU读出第一个字节后发送,实际上这个字节是原数的LSB,到了接收方反倒成了MSB从而发生混乱。

你可能感兴趣的:(网络,java,python,编程语言,linux)