算法总结-递归

什么是递归

简单说,递归就是函数自己调用自己,并在满足一定条件下返回的函数调用现象。

最简单的递归函数就是阶乘函数,factorial函数存在factorial(n-1),因此是递归函数。

public int factorial(int n) {
    if (n < = 1) {
        return 1;
    }
    return n * factorial(n - 1);
}

进一步剖析「递归」,先有「递」再有「归」,「递」的意思是将问题拆解成子问题来解决, 子问题再拆解成子子问题,...,直到被拆解的子问题无需再拆分成更细的子问题(即可以求解)。「归」是说最小的子问题解决了,那么它的上一层子问题也就解决了,上一层的子问题解决了,上上层子问题自然也就解决了,....,直到最开始的问题解决。文字说可能有点抽象,那我们就以阶层 f(6) 为例来看下它的「递」和「归」。

求解问题 f(6),由于 f(6) = n * f(5),所以 f(6) 需要拆解成 f(5) 子问题进行求解,同理 f(5) = n * f(4) ,也需要进一步拆分,... ,直到 f(1),这是「递」。f(1) 解决了,由于 f(2) = 2 f(1) = 2 也解决了,.... f(n)到最后也解决了,这是「归」。

所以递归的本质是能把问题拆分成具有相同解决思路的子问题,直到最后被拆解的子问题再也不能拆分,解决了最小粒度可求解的子问题后,在「归」的过程中自然顺其自然地解决了最开始的问题。

递归算法通用解决思路

我们在上一节仔细剖析了什么是递归,可以发现递归有以下两个特点:

  1. 一个问题可以分解成具有相同解决思路的子问题,子子问题,换句话说这些问题都能调用同一个函数。
  2. 经过层层分解的子问题最后一定是有一个不能再分解的固定值的(即终止条件),如果没有的话,就无穷无尽地分解子问题了,问题显然是无解的。

所以解递归题的关键在于我们首先需要根据以上递归的两个特点判断题目是否可以用递归来解。

经过判断可以用递归后,接下来我们就来看看用递归解题的基本套路(四步曲):

  1. 先定义一个函数,明确这个函数的功能,由于递归的特点是问题和子问题都会调用函数自身,所以这个函数的功能一旦确定了, 之后只要找寻问题与子问题的递归关系即可。
  2. 接下来寻找问题与子问题间的关系(即递推公式),这样由于问题与子问题具有相同解决思路,只要子问题调用步骤 1 定义好的函数,问题即可解决。所谓的关系最好能用一个公式表示出来,比如 f(n) = n * f(n-) 这样,如果暂时无法得出明确的公式,用伪代码表示也是可以的,发现递推关系后,要寻找最终不可再分解的子问题的解,即(临界条件),确保子问题不会无限分解下去。由于第一步我们已经定义了这个函数的功能,所以当问题拆分成子问题时,子问题可以调用步骤 1 定义的函数,符合递归的条件(函数里调用自身)。
  3. 将第二步的递推公式用代码表示出来补充到步骤 1 定义的函数中。
  4. 最后也是很关键的一步,根据问题与子问题的关系,推导出时间复杂度,如果发现递归时间复杂度不可接受,则需转换思路对其进行改造,看下是否有更靠谱的解法。

你可能感兴趣的:(数据结构与算法,算法,递归)