分治法(算法)

分治法是算法常用的解题方法之一,是将一个大的问题拆分为若干小的问题。二分法就是常用的分治法。

可以采用分治法解决的一些问题:

1.二分查找

2.合并排序(归并排序)

3.快速排序

4.快速幂

5.汉诺塔

一、二分查找

二分查找对要查找的序列有两个要求:

​ 一是该序列必须是有序的(即该序列中的所有元素都是按照大小关系排好序的,升序和降序都可以)

​ 二是该序列必须是顺序存储的。

例题:二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

思路:

1、先确定中间位置:

    middle = (left+right)/2;

2、将待查找得值与nums[middle]的值相比较。若相等,则查找成功并返回该位置,否则须确定新确定查找区间,继续查找。

3、如果nums[middle] 的值大于待查找的值,则证明在nums[middle]~nums[right]中所有的值都大于待查找的值,令right=middle,在nums[left]到nums[middle]中查找。

4、当left>right时,证明nums中没有要查找的值,跳出循环,返回-1。

代码实现

class Solution {

  public int search(int[] nums, int target) {

​    int left=0;

​    int right=nums.length-1;

​    int middle;

​    while(left<=right){

​      middle=(right+left)/2;

​      if(nums[middle]==target)

​        return middle;

​      else if(nums[middle]>target)

​        right=middle-1;

​      else

​        left=middle+1;

​    }

​    return -1;

  }

}

java

二、合并排序(归并排序)

归并排序是基于递归实现的,归并排序是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法的一个非常典型的应用。将数据分为a,b两组,再将a,b各自再分成两组,以此类推,当每一组都只有一个数据时,认为这个小小组已经达到了有序,再将相邻两个小小组依次合并。

例题:排序数组

给你一个整数数组 nums,请你将该数组升序排列。

示例 1:

输入:nums = [5,2,3,1]
输出:[1,2,3,5]

思路:

分治法(算法)_第1张图片

1、将数组进行拆分,利用递归的方法,将数组拆分成一个个单独的元素。

2、依次对数组进行合并,依次比较数组内的元素,将较小的元素先加入新的数组,依次往下比较,如果一个数组内的值已经全都加入新数组,将另一个数组的剩下的值依次加入新数组。

3、将额外的空间覆盖掉原来的空间。

代码实现

class Solution {
    int[] tmp; //定义临时数组

    public int[] sortArray(int[] nums) {
        tmp = new int[nums.length];
        mergeSort(nums, 0, nums.length - 1); //进入递归
        return nums;
    }

    public void mergeSort(int[] nums, int l, int r) {
        if (l >= r) {
            return;        //当l>=r时,每个区间里面只有一个数值
        }
        int mid = (l + r) /2;    //均分区间
        mergeSort(nums, l, mid);    //对左侧区间进行划分
        mergeSort(nums, mid + 1, r); //对右侧区间进行划分
        int i = l, j = mid + 1;    
        int cnt = 0;
        while (i <= mid && j <= r) { //利用循环将较两个区间内较小值依次加入临时数组
            if (nums[i] <= nums[j]) {
                tmp[cnt++] = nums[i++];
            } else {
                tmp[cnt++] = nums[j++];
            }
        }
        while (i <= mid) {                //将数组内剩下的元素依次加入
            tmp[cnt++] = nums[i++];
        }
        while (j <= r) {
            tmp[cnt++] = nums[j++];
        }
        for (int k = 0; k < r - l + 1; ++k) {    //将临时数组内的值存入nums
            nums[k + l] = tmp[k];
        }
    }
}

java

三、快速排序

快速排序,基于冒泡排序移动换位思想——通过遍历,判断每个数并放置在数组合适的位置。快速排序可能是应用最广泛的排序算法,适用于各种不同的输入数据且在一般应用中比其他排序都要快的多。

排序方式:

1、选定一个值,一般是数值的第一个值

2、进行分区,将该值与数组后面的数据依次进行比较,将比它小的值都放在左边,比它大的值都放在右边。

3、采用递归的方法,对该值左右区间的数组依次再进行分区操作,直到每个区间只剩一个值。

例题:最小的k个数

输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。

示例 1:

输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]

思路:

1、选取一个基数

2、设置i,j两个指针,分别从左右两边向中间进行查找,先使j移动,当遇到arr[j]小于基数时,移动i,当遇到arr[i]大于基数时,将arr[i]与arr[j]互换位置,保证比基数小的值在左边,比基数大的值在右边

3、当i>=j的时候,跳出循环,将基数与i指针所在的位置交换数值

4、当i>k时,证明最小的k个数在0~(i-1)之间,在该区间查找最小的k个数

5、当i

6、当i==k时,返回最小的k个数

代码实现:

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k >= arr.length) return arr;
        return quickSort(arr, k, 0, arr.length - 1);//进入排序
    }
    //令arr[l]为基数
    private int[] quickSort(int[] arr, int k, int l, int r) {
        int i = l, j = r;
        while (i < j) {                    //当i= arr[l]) j--; 
            while (i < j && arr[i] <= arr[l]) i++;
            swap(arr, i, j);
        }
        swap(arr, i, l); //将基础值与arr[i]交换位置,保证在基础值左边的值均小于它,右边的值均大于它
        if (i > k) return quickSort(arr, k, l, i - 1); //当i>k时,证明最小的k个数在0~(i-1)之间,该区间的数进行排序
        if (i < k) return quickSort(arr, k, i + 1, r);//当i

四、快速幂

例题:Pow(x, n)

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

思路

分治法(算法)_第2张图片

1、声明数据类型为long的b,将n赋值给它

2、当b为负数时,先将b转化为正数运算,x=1/x,b=-b

3、将b除以2,如果余数为一,将res=res*x,x等于x的平方,因为最后结果永远等于x的b次幂乘res,当b=0时,最后结果等于1乘res,即res

代码实现

class Solution {
    public double myPow(double x, int n) {
        long b = n;  //1、声明数据类型为long的b,将n赋值给它
        double res = 1.0;
        if(b < 0) {  //当b为负数时,转化为正数的运算,x=1/x,b=-b
            x = 1 / x;
            b = -b;
        }
        while(b > 0) {        //3、将b除以2,如果余数为一,将res=res*x,因为最后结果永远等于x的b次幂乘res,当b=0时,最后结果等于1乘res,即res
            if((b % 2) == 1) 
                res *= x;
            x *= x;
            b = b/2;
        }
        return res;
    }
}

五、汉诺塔

例题:汉诺塔问题

在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。

请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。

你需要原地修改栈。

示例1:

输入:A = [2, 1, 0], B = [], C = []
输出:C = [2, 1, 0]

思路:

假设A柱有n个盘子

分治法(算法)_第3张图片

1、B柱与C柱替换,新的C柱就是B柱。

2、将A柱上的n-1个盘子移到新C柱上,实际上都移到了B柱上。

3、将B柱与C柱换回来。

4、将A柱上的最后一个盘子移到C柱上,这个盘子不用再移动,将它和C柱看成一个整体。

5、将B柱与A柱互换位置,B柱成为新的A柱。

6、将B柱看出A柱重复1~5步,直到盘子完全移到C上。

代码实现:

class Solution {
    public void hanota(List A, List B, List C) {
        int num = A.size();
        dac(num,A,B,C);
    }
    //num为A盘剩下的盘子数量
    public void dac(int num,List A,List B,List C){
        if(num == 1){    //当A盘只剩下一个盘子的时候,将最后一个盘子移动到C盘
            C.add(A.remove(A.size() - 1));
            return;
        }else{
            dac(num - 1,A,C,B); //B柱与C柱替换,新的C柱就是B柱,将A柱上的n-1个盘子移到新C柱上,实际上都移到了B柱上。
            C.add(A.remove(A.size() - 1));    //将A柱最后一个盘子移动到C柱上
            dac(num - 1,B,A,C); //将B柱与A柱互换位置,B柱成为新的A柱,将B柱上的所有盘子都移到C柱上
        }
    }
}

分治和递归:

递归和分治本身就不是同一种东西,递归是敲代码的技巧之一,分治是算法的思想之一,两者没关系。

你可能感兴趣的:(个人总结,java,算法,排序算法)