- Linux驱动学习--DRM框架介绍及基于DRM框架的HDMI开发
文艺小少年
linuxandroidhdmi驱动程序drm
目录一、引言二、DRM框架介绍三、DRM框架的使用四、源码分析一、引言Android4开始,hdmi等视频输出框架开始由framebuffer想DRM迁移,今天我们就来简单分析下DRM框架二、DRM框架介绍DRM是一个内核级的设备驱动,具体的说是显卡驱动的一种架构源码位置因为Linuxkernel内部接口和数据结构可能随时发生变化,所以DRI模块要针对特定的内核版本进行编译。kernel2.6.2
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- ARM架构与嵌入式系统开发全流程教程
夏勇兴
本文还有配套的精品资源,点击获取简介:ARM架构因其低功耗、高性能和灵活性而广泛应用于嵌入式系统、移动设备等多种计算平台。本教程将深入介绍ARM处理器的类型,包括Cortex系列、ARMv8-A架构,以及Thumb和Thumb-2指令集。同时,涵盖ARM编程基础知识,包括汇编语言、C/C++编程和软件开发工具链,以及嵌入式系统中的应用和入门级教程,帮助初学者逐步掌握ARM处理器的工作原理和嵌入式系
- 如何最小改变架构,快速实现流控的?(第34讲)
58沈剑
架构
《架构师之路:架构设计中的100个知识点》34.快速流控传统架构,为何不是默认流控的?站点与服务,服务与服务上下游之间,一般如何采用两种通讯模式:其一,RPC直接调用。其二,MQ推送模式。画外音:这也是MQ的默认模式。这两种模式,都可能造成流量冲击:流量从端到站点,到服务,到数据库,流量会一路透传下来,引发雪崩。举个秒杀业务的栗子。1.上游:端上发起抢购操作;2.下游:完成秒杀业务逻辑(库存检查,
- Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度
自节码
大数据hive数据分析hadoop
Hive窗口函数与分析函数深度解析:开启大数据分析的新维度在当今大数据蓬勃发展的时代,Hive作为一款强大的数据仓库工具,其窗口函数和分析函数犹如一把把精巧的手术刀,助力数据分析师们精准地剖析海量数据,挖掘出深藏其中的价值宝藏。本文将带领大家深入探索HiveQL中这些神奇函数的奥秘,从版本演进、功能特性到丰富多样的实际应用示例,全方位地呈现它们在大数据处理领域的卓越魅力。一、版本回溯与知识宝库指引
- 《探秘HVV蓝队:领先的网络安全技术背后的力量》
乐茵安全
rednotes数据库网络安全web安全
企业网络架构企业技术和信息团队的管理架构因企业的规模、行业特性和业务需求而异,但通常遵循一定的框架和原则。高层管理CIO(首席信息官):负责企业信息系统的战略规划、管理和优化,确保信息技术与企业战略保持一致。CTO(首席技术官):负责运营技术的整体方向,包括技术创新、研发、技术选型等。IT管理中央系统:集中管理企业内的所有IT资源,包括软件、硬件和数据。自带设备(BYOD):员工自带移动设备(如手
- RabbitMQ,RocketMQ,Kafka 事务性,消息丢失,消息顺序性和消息重复发送的处理策略
90后小伙追梦之路
面试java架构kafkarabbitmq分布式redis数据库
消息队列常见问题处理分布式事务什么是分布式事务我们的服务器从单机发展到拥有多台机器的分布式系统,各个系统之前需要借助于网络进行通信,原有单机中相对可靠的方法调用以及进程间通信方式已经没有办法使用,同时网络环境也是不稳定的,造成了我们多个机器之间的数据同步问题,这就是典型的分布式事务问题。在分布式事务中事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。分
- Restful风格
!!!525
springbootrestful后端
引言在前后端分离的开发模式中,前后端开发人员都需要根据提前定义好的接口文档,来进行前后端功能的开发。后端开发人员:必须严格遵守提供的接口文档进行后端功能开发(保障开发的功能可以和前端对接)而在前后端进行交互的时候,我们需要基于当前主流的REST风格的API接口进行交互。什么是REST风格呢?REST(RepresentationalStateTransfer),表述性状态转换,它是一种软件架构风格
- 关于固定随机种子,模型每次结果也不一样的问题可能解决方法
小白每天学一点
pytorch深度学习人工智能python
问题描述最近一直被“固定随机种子,模型每次结果也不一样”这个问题困扰,我的模型同样的代码每次跑的结果都不一样,而且还忽高忽低,有可能有模型本身架构不合适的问题(按理来说,即便有变动也不会差别太大),忽略掉每次结果差距较大这个问题,先来解决每次结果都不一样这个问题。原因分析:可以按照以下原因顺序检查模型:1.没有设置随机种子。2.虽然设置了随机种子,但随机初始化参数也会有变动。3.若第2中情况已检查
- 阿里云通义开源首个推理步骤评估标准,探索AI推理模型新路径
量子位
1月16日,阿里云通义开源全新的数学推理过程奖励模型Qwen2.5-Math-PRM,72B及7B尺寸模型性能均大幅超越同类开源过程奖励模型;在识别推理错误步骤能力上,Qwen2.5-Math-PRM以7B的小尺寸就超越了GPT-4o。同时,通义团队还开源首个步骤级的评估标准ProcessBench,填补了大模型推理过程错误评估的空白。在当前大模型推理过程中,不时存在逻辑错误或编造看似合理的推理步
- 大数据新视界 -- 大数据大厂之 Hive 数据压缩算法对比与选择(下)(20 / 30)
青云交
大数据新视界#Hive之道大数据Hive数据压缩压缩算法对比选择因素案例分析实时数据处理数据存储优化sql
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- 大数据大厂之 Hive 数据安全:权限管理体系的深度解读(上)(15/ 30)
青云交
大数据新视界#Hive之道大数据Hive集成大数据工具集成模式优化策略未来趋势数据一致性
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- 大数据大厂之 Impala 性能优化:融合人工智能预测的资源预分配秘籍(上)(29 / 30)
青云交
大数据新视界#Impala之道大数据Impala人工智能预测资源预分配数据收集模型构建查询性能优化
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- MiniMax开源,突破传统Transformer架构,震撼业界
人工智能模型
就在昨天,AI领域迎来了一项重大突破——MiniMax发布并开源了新一代01系列模型。国产大模型市场再掀巨浪,传统Transformer架构或许将不再是唯一选择。MiniMax-Text-01模型:https://huggingface.co/MiniMaxAI/MiniMax-Text-01MiniMax-VL-01模型:https://huggingface.co/MiniMaxAI/Mini
- 大数据新视界 -- 大数据大厂之 Impala 性能提升:高级执行计划优化实战案例(下)(18/30)
青云交
大数据新视界#Impala之道大数据Impala高级执行计划优化实战案例金融电商性能提升
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之数据脱敏技术在大数据中的应用与挑战
青云交
大数据新视界大数据数据脱敏发展现状应用场景挑战解决方案未来趋势
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- mindspeed-llm源码解析(一)preprocess_data
人工智能
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。文章中贴的源码加了相关注释,同学们可以把源码和注释结合起来看。首先来看一下main函数defmain():#获取入参,通过后面的代码可以知道有哪些关键参数args=get_args()#参
- 大数据新视界 --大数据大厂之 Apache Beam:统一批流处理的大数据新贵
青云交
大数据新视界大数据ApacheBeam批流统一性能优化案例展示数据分区容错机制
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之 Volcano:大数据计算任务调度的新突破
青云交
Volcano之道大数据新视界大数据Volcano任务调度效率提升资源优化技术融合实践指导
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之 GraphQL 在大数据查询中的创新应用:优化数据获取效率
青云交
GraphQL之道大数据新视界大数据GraphQL数据查询性能优化多数据源整合实时数据分析移动端应用优化数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之AI 与大数据的融合:开创智能未来的新篇章
青云交
大数据新视界AI&人工智能大数据人工智能智能环保智能教育智能农业ChatGPT智能能源数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 从RNN到Transformer:生成式AI技术演变与未来展望
非著名架构师
人工智能rnntransformer
生成式人工智能(GenerativeAI)近年来取得了令人瞩目的进展,其背后的核心技术是自回归模型的不断演进。从传统的递归神经网络(RNN)到革命性的Transformer架构,本文将全面剖析这一技术发展历程。一、RNN:生成式模型的起点1.RNN的基本原理递归神经网络(RecurrentNeuralNetwork,RNN)是一种专为处理序列数据设计的神经网络架构。其核心思想是通过循环连接的隐藏状
- 移动终端基带芯片的基本架构介绍之二(移动终端中的基带芯片)
a1809032425
网络通信学习
移动终端基带芯片的基本架构介绍之二(移动终端中的基带芯片)参考链接:https://blog.csdn.net/lxl584685501/article/details/46771429http://m.blog.csdn.net/blog/suipingsp/35280465http://m.blog.csdn.net/blog/suipingsp/35574959http://www.bubu
- 开源多模态推理模型QVQ:视觉推理能力的突破与未来展望
前端
近年来,AI代码生成器等人工智能技术飞速发展,多模态推理模型作为其中一个重要分支,正展现出越来越强大的能力。它能够理解和处理多种类型的数据,例如图像、文本、音频等,并进行复杂的推理和决策。阿里云通义千问团队近日发布的QVQ-72B-Preview模型,就是一个极具代表性的例子。该模型开源且在视觉推理方面表现突出,为多模态模型的发展树立了新的里程碑。QVQ模型的核心能力与突破QVQ-72B-Prev
- 【YashanDB知识库】Hive 命令工具insert崖山数据库报错
数据库
本文内容来自YashanDB官网,原文内容请见https://www.yashandb.com/newsinfo/7919217.html?templateId=171...【问题分类】功能兼容【关键字】spark30041、不兼容【问题描述】本项目的架构是hadoop+hive+yashandb使用崖山数据库,初始化所有的原数据表和数据新建表之后,插入数据时候报错,hadoopcode30041
- 手把手教你学simulink(79.1)--智能家居窗帘与窗户控制场景实例:基于Simulink设计和仿真一个智能窗帘与窗户控制系统,以实现对室内环境的有效管理
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinkmatlabsimulink
目录智能窗帘与窗户控制系统场景下的天气适应性操作建模项目实例项目背景介绍系统架构1.传感器模块(Sensors)2.控制器模块(Controller)3.执行器模块(Actuator)4.通信模块(Communication)仿真实现步骤1.创建新的Simulink模型2.添加传感器模块光照传感器温度传感器天气传感器在Simulink中实现传感器模块3.添加控制器模块天气分析算法决策算法在Simu
- WebKit 的渲染引擎优化策略
简介:WebKit是一个开源的网页浏览引擎,被广泛应用于多种浏览器,包括Safari和许多移动设备浏览器。其高效的渲染性能和灵活的架构使得WebKit成为现代浏览器开发的重要组成部分。在这篇文章中,我们将深入探讨WebKit在渲染引擎优化方面的策略,尤其关注其在提高页面加载速度和渲染效率方面的技术实现。正文:什么是WebKit?WebKit起源于KHTML和KJS,最初由苹果公司用于Safari浏
- Python网络爬虫入门教程:从抓取数据到应用实现
冷夜雨.
python
引言在大数据时代,信息就是力量。各种网站每天产生着海量的数据,这些数据中蕴藏着巨大的商业价值和研究价值。如何快速、自动化地从互联网上获取这些信息,成为了数据科学、人工智能、市场分析等领域中的一个重要课题。Python,作为一门易于学习且功能强大的编程语言,其丰富的库和工具使得构建网络爬虫变得非常简单。网络爬虫(WebScraper)是一种自动化程序,用来从网页中提取信息。无论是用于数据分析、竞争对
- XXL-JOB v2.5.0 | 分布式任务调度平台
ReleaseNotes1、【优化】框架基础守护线程异常处理逻辑优化,避免极端情况下因Error导致调度终止问题;2、【优化】底层通讯超时时间支持自定义,默认3秒,缓解网络抖动导致任务通讯超时问题;可参考xxl-job-admin和samples示例代码自行配置;3、【修复】调度中心快慢线程池优化拒绝策略,避免因默认AbortPolicy导致调度结果丢失问题;4、【优化】调度中心快慢线程池队列长度
- 跨Android、iOS、鸿蒙多平台框架ArkUI-X
鸿蒙系统小能手Mr.Li
HarmonyOSopenHarmonyiosharmonyosandroid华为
ArkUI是一套构建分布式应用界面的声明式UI开发框架。它使用极简的UI信息语法、丰富的UI组件、以及实时界面预览工具,帮助您提升移动应用界面开发效率30%。您只需使用一套ArkTSAPI,就能在Android、iOS、鸿蒙多个平台上提供生动而流畅的用户界面体验。一、配套关系表1版本软件和平台配套关系目标平台项目编译使用OSSDK版本备注OpenHarmony4.0(APIVersion10)Be
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持