We have a list of N strings Si. All strings have length M and consist only of characters A, B, C and D.
Let us define the distance between two strings X and Y as the number of indices j, where the strings have
different characters (Xj̸ = Yj ). We know that the list of strings Si contains precisely one special string
that has distance K to all other strings. Note that there might be other pairs of strings with a distance
of K. We are experiencing problems finding this special string, so please write a program to help us out
Input
The first line contains space-separated integers N , M and K. Strings Si are given in the following N lines.
Constraints
• 2 ≤ N, M ≤ 105
• 1 ≤ K ≤ M
• N M ≤ 2 · 107
Output
Output the index i of the special string. Strings are numbered from 1 to N as given in the input.
Examples
standard input standard output
5 10 2
DCDDDCCADA
ACADDCCADA
DBADDCCBDC
DBADDCCADA
ABADDCCADC
4
4 6 5
AABAAA
BAABBB
ABAAAA
ABBAAB
题意:给 n n n个长度为 m m m的串,串的字符集为 A , B , C , D A,B,C,D A,B,C,D。
找出一个串,和任何一个串Hamming距离均为为 k k k。
考虑hash,给每个串随机分配一个随机数 p p p,
f [ i ] [ j ] f[i][j] f[i][j]表示第i个位置为字母 j j j的串的 p p p的和
若答案为第 i i i个串,显然有 k ∑ j ≠ i p j = ∑ l = 1 m ∑ j ≠ s [ i ] [ l ] f [ l ] [ j ] k\sum_{j\ne i } p_j=\sum_{l=1}^m\sum_{j \ne s[i][l]}f[l][j] k∑j=ipj=∑l=1m∑j=s[i][l]f[l][j]
为了保障成立可以多随机几次。
#include
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int>
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
For(j,m-1) cout<<a[i][j]<<' ';\
cout<<a[i][m]<<endl; \
}
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll F[2]={1000000007,1000000009};
ll mul(ll a,ll b,ll F){return (a*b)%F;}
ll add(ll a,ll b,ll F){return (a+b)%F;}
ll sub(ll a,ll b,ll F){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b,ll F){a=(a%F+b%F)%F;}
inline int read()
{
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
vector<string> v;
#define MAXN (2000000+10)
vector<vector<vector<ll> > > f;
#define MAXM (2000000+10)
ll p[101010][2];
int n,m,k;
bool ck(int i) {
Rep(j,n) {
if(i!=j) {
int p=0;
Rep(l,m) p+=v[i][l]!=v[j][l];
if(p^k) return 0;
}
}return 1;
}
int main()
{
// freopen("F.in","r",stdin);
// freopen(".out","w",stdout);
p[0][0]=p[0][1]=1;
cin>>n>>m>>k;
For(i,n) Rep(l,2) {
p[i][l]=((ll)RAND_MAX*rand()+rand())%F[l];
}
Rep(i,n) {
string s;
cin>>s;
v.pb(s);
}
f.resize(m);
Rep(i,m) {
f[i].resize(4);
Rep(j,4) {
f[i][j].assign(2,0);
}
}
Rep(i,n) {
Rep(j,m) {
int t=v[i][j]-'A';
Rep(l,2) upd(f[j][t][l],p[i][l],F[l]);
}
}
ll s[2]={0,0};
Rep(i,n) Rep(l,2) upd(s[l],mul(p[i][l],k,F[l]),F[l]);
Rep(i,n) {
ll ans[2]={};
Rep(j,m) {
int t=v[i][j]-'A';
Rep(k,4) {
if(t!=k) Rep(l,2) upd(ans[l],f[j][k][l],F[l]);
}
}
ll s2[2]={};
Rep(l,2) s2[l] = sub(s[l],mul(p[i][l],k,F[l]),F[l]);
bool fl=1;
Rep(l,2) if(s2[l]!=ans[l]) fl=0;
if(fl) {
if(ck(i)){
cout<<i+1<<endl;
return 0;
}
}
}
return 0;
}