R for data science ||使用stringr处理字符串

对于非结构化和半结构化的数据,正则表达式可以用非常简练的语言来描述字符串中的表达模式。第一次见到正则表达式,你可能会以为这是猫咪在键盘上踩出来的,但是随着逐渐加深对他的理解后,你就会体会其中的深刻含义了。

str_length(c("a", "R for data science", NA))
[1]  1 18 NA

字符串组合

str_c("x", "y")
#> [1] "xy"
str_c("x", "y", "z")
#> [1] "xyz"
str_c("x", "y", sep = ", ")
#> [1] "x, y"
x <- c("abc", NA)
str_c("|-", x, "-|")
#> [1] "|-abc-|" NA
str_c("|-", str_replace_na(x), "-|")
#> [1] "|-abc-|" "|-NA-|"
str_c("prefix-", c("a", "b", "c"), "-suffix")
#> [1] "prefix-a-suffix" "prefix-b-suffix" "prefix-c-suffix"
name <- "Hadley"
time_of_day <- "morning"
birthday <- FALSE

str_c(
  "Good ", time_of_day, " ", name,
  if (birthday) " and HAPPY BIRTHDAY",
  "."
)
#> [1] "Good morning Hadley."
str_c(c("x", "y", "z"), collapse = ", ")
#> [1] "x, y, z"

提取子字符串

x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
#> [1] "App" "Ban" "Pea"
# negative numbers count backwards from end
str_sub(x, -3, -1)
#> [1] "ple" "ana" "ear"
str_sub("a", 1, 5)
#> [1] "a"
str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1))
x
#> [1] "apple"  "banana" "pear"

区域设置

# Turkish has two i's: with and without a dot, and it
# has a different rule for capitalising them:
str_to_upper(c("i", "ı"))
#> [1] "I" "I"
str_to_upper(c("i", "ı"), locale = "tr")
#> [1] "İ" "I"
x <- c("apple", "eggplant", "banana")

str_sort(x, locale = "en")  # English
#> [1] "apple"    "banana"   "eggplant"

str_sort(x, locale = "haw") # Hawaiian
#> [1] "apple"    "eggplant" "banana"
正则表达式模式匹配
x <- c("apple", "banana", "pear")
str_view(x, "an")
banana

str_view(x, ".a.")
banana
pear
锚定

^ to match the start of the string.
$ to match the end of the string.

x <- c("apple", "banana", "pear")
str_view(x, "^a")
apple
str_view(x, "a$")

banana
字符串类和字符选项

\d: matches any digit.
\s: matches any whitespace (e.g. space, tab, newline).
[abc]: matches a, b, or c.

# Look for a literal character that normally has special meaning in a regex
str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")
a.c

str_view(c("grey", "gray"), "gr(e|a)y")
grey
gray

重复

?: 0 or 1
+: 1 or more
*: 0 or more

x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

str_view(x, "CC+")

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

str_view(x, 'C[LX]+')

1888 is the longest year in Roman numerals: MDCCCLXXXVIII

{n}: exactly n
{n,}: n or more
{,m}: at most m
{n,m}: between n and m
str_view(x, "C{2}")
分组与回溯引用
str_view(fruit, "(..)\\1", match = TRUE)

banana
coconut
cucumber
jujube
papaya
salal berry

匹配检测
x <- c("apple", "banana", "pear")
str_detect(x, "e")
#> [1]  TRUE FALSE  TRUE
# How many common words start with t?
sum(str_detect(words, "^t"))
#> [1] 65
# What proportion of common words end with a vowel?
mean(str_detect(words, "[aeiou]$"))
#> [1] 0.277
# Find all words containing at least one vowel, and negate
no_vowels_1 <- !str_detect(words, "[aeiou]")
# Find all words consisting only of consonants (non-vowels)
no_vowels_2 <- str_detect(words, "^[^aeiou]+$")
identical(no_vowels_1, no_vowels_2)
#> [1] TRUE
words[str_detect(words, "x$")]
#> [1] "box" "sex" "six" "tax"
str_subset(words, "x$")
#> [1] "box" "sex" "six" "tax"
df <- tibble(
  word = words, 
  i = seq_along(word)
)
df %>% 
  filter(str_detect(word, "x$"))
#> # A tibble: 4 x 2
#>   word      i
#>    
#> 1 box     108
#> 2 sex     747
#> 3 six     772
#> 4 tax     841
x <- c("apple", "banana", "pear")
str_count(x, "a")
#> [1] 1 3 1

# On average, how many vowels per word?
mean(str_count(words, "[aeiou]"))
#> [1] 1.99
df %>% 
  mutate(
    vowels = str_count(word, "[aeiou]"),
    consonants = str_count(word, "[^aeiou]")
  )
#> # A tibble: 980 x 4
#>   word         i vowels consonants
#>               
#> 1 a            1      1          0
#> 2 able         2      2          2
#> 3 about        3      3          2
#> 4 absolute     4      4          4
#> 5 accept       5      2          4
#> 6 account      6      3          4
#> # … with 974 more rows
str_count("abababa", "aba")
#> [1] 2
str_view_all("abababa", "aba")

aba b aba

提取匹配内容
length(sentences)
#> [1] 720
head(sentences)
#> [1] "The birch canoe slid on the smooth planks." 
#> [2] "Glue the sheet to the dark blue background."
#> [3] "It's easy to tell the depth of a well."     
#> [4] "These days a chicken leg is a rare dish."   
#> [5] "Rice is often served in round bowls."       
#> [6] "The juice of lemons makes fine punch."
colours <- c("red", "orange", "yellow", "green", "blue", "purple")
colour_match <- str_c(colours, collapse = "|")
colour_match
#> [1] "red|orange|yellow|green|blue|purple"
has_colour <- str_subset(sentences, colour_match)
matches <- str_extract(has_colour, colour_match)
head(matches)
#> [1] "blue" "blue" "red"  "red"  "red"  "blue"
more <- sentences[str_count(sentences, colour_match) > 1]
str_view_all(more, colour_match)

It is hard to erase blue or red ink.
Thegreen light in the brown box flickered.
The sky in the west is tinged with orange red.

str_extract(more, colour_match)
#> [1] "blue"   "green"  "orange"
分组匹配
noun <- "(a|the) ([^ ]+)"

has_noun <- sentences %>%
  str_subset(noun) %>%
  head(10)
has_noun %>% 
  str_extract(noun)
#>  [1] "the smooth" "the sheet"  "the depth"  "a chicken"  "the parked"
#>  [6] "the sun"    "the huge"   "the ball"   "the woman"  "a helps"
tibble(sentence = sentences) %>% 
  tidyr::extract(
    sentence, c("article", "noun"), "(a|the) ([^ ]+)", 
    remove = FALSE
  )
#> # A tibble: 720 x 3
#>   sentence                                    article noun   
#>                                               
#> 1 The birch canoe slid on the smooth planks.  the     smooth 
#> 2 Glue the sheet to the dark blue background. the     sheet  
#> 3 It's easy to tell the depth of a well.      the     depth  
#> 4 These days a chicken leg is a rare dish.    a       chicken
#> 5 Rice is often served in round bowls.               
#> 6 The juice of lemons makes fine punch.              
#> # … with 714 more rows
替换匹配内容
x <- c("apple", "pear", "banana")
str_replace(x, "[aeiou]", "-")
#> [1] "-pple"  "p-ar"   "b-nana"
str_replace_all(x, "[aeiou]", "-")
#> [1] "-ppl-"  "p--r"   "b-n-n-"
x <- c("1 house", "2 cars", "3 people")
str_replace_all(x, c("1" = "one", "2" = "two", "3" = "three"))
#> [1] "one house"    "two cars"     "three people"
sentences %>% 
  str_replace("([^ ]+) ([^ ]+) ([^ ]+)", "\\1 \\3 \\2") %>% 
  head(5)
#> [1] "The canoe birch slid on the smooth planks." 
#> [2] "Glue sheet the to the dark blue background."
#> [3] "It's to easy tell the depth of a well."     
#> [4] "These a days chicken leg is a rare dish."   
#> [5] "Rice often is served in round bowls."
拆分
sentences %>%
  head(5) %>% 
  str_split(" ")
#> [[1]]
#> [1] "The"     "birch"   "canoe"   "slid"    "on"      "the"     "smooth" 
#> [8] "planks."
#> 
#> [[2]]
#> [1] "Glue"        "the"         "sheet"       "to"          "the"        
#> [6] "dark"        "blue"        "background."
#> 
#> [[3]]
#> [1] "It's"  "easy"  "to"    "tell"  "the"   "depth" "of"    "a"     "well."
#> 
#> [[4]]
#> [1] "These"   "days"    "a"       "chicken" "leg"     "is"      "a"      
#> [8] "rare"    "dish."  
#> 
#> [[5]]
#> [1] "Rice"   "is"     "often"  "served" "in"     "round"  "bowls."
"a|b|c|d" %>% 
  str_split("\\|") %>% 
  .[[1]]
#> [1] "a" "b" "c" "d"
sentences %>%
  head(5) %>% 
  str_split(" ", simplify = TRUE)
#>      [,1]    [,2]    [,3]    [,4]      [,5]  [,6]    [,7]    
#> [1,] "The"   "birch" "canoe" "slid"    "on"  "the"   "smooth"
#> [2,] "Glue"  "the"   "sheet" "to"      "the" "dark"  "blue"  
#> [3,] "It's"  "easy"  "to"    "tell"    "the" "depth" "of"    
#> [4,] "These" "days"  "a"     "chicken" "leg" "is"    "a"     
#> [5,] "Rice"  "is"    "often" "served"  "in"  "round" "bowls."
#>      [,8]          [,9]   
#> [1,] "planks."     ""     
#> [2,] "background." ""     
#> [3,] "a"           "well."
#> [4,] "rare"        "dish."
#> [5,] ""            ""

r4ds

你可能感兴趣的:(R for data science ||使用stringr处理字符串)