- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 找组织——机器学习社区、团体洞察
小哥伯涵
机器学习人工智能
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?”AI社区——深度学习社区Reddit上的MachineLearningsubreddit:https://www.reddit.com/r/MachineLearning/是一个拥有超过400,000名成员的活跃社区。在这里,您可以找到有
- 从零开始理解零样本学习:AI人工智能必学技术
AI学长带你学AI
学习人工智能ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、跨模态映射、语义空间、AI泛化能力、大模型、少样本学习、数据效率摘要:传统AI需要“见多识广”才能识别新事物,但现实中很多场景(如稀有物种、冷门物品)缺乏足够数据。零样本学习(Zero-ShotLearning,ZSL)就像AI的“推理翻译官”,能让机器通过“文字描述”理解“没见过的图片”。本文将用“认新单词”的生活故事,一步步拆解零
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接
时序动作分割与检测时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面3篇论文是腾讯AILab在这一方向的探索成果。1.动作识别中的时序帧间差异表征学习TemporalDistinctRepresentationLearningforActionRecognition本文由腾讯AILab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- A Survey on Deep Learning Techniques Applied to medical image analysis
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.BackgroundandKeyConceptsIntroductionKeyTerms&Concepts3.CoreTechnicalConceptsandOperationsConvolutionalNeuralNetwork(CNN)StructureofaCNNLayerBuildingBlocksofCNNConvolutionalLaye
- C++工厂模式的作用(工厂方法、Factory Method、Factory Pattern)
Dontla
C/C++c++工厂方法模式
文章目录代码示例工厂的作用1.对象创建的封装2.解耦客户端和具体类3.统一的创建入口4.隐藏实现细节在这个项目中的具体体现总结代码示例https://gitee.com/arnold_s/my-learning-test/tree/master/20250610_C++_design_pattern/23_GoF_Design_Patterns/02_Strategy工厂的作用1.对象创建的封装T
- 基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架
pk_xz123456
算法无人机分布式算法matlab人工智能制造开发语言
基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架摘要:低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深度融合分布式部分可观测马尔可夫决策过程(Dec-POMDP)与联邦强化学习(FederatedReinforcementLearning,FRL)
- Cross-stitch Networks for Multi-task Learning 项目教程
童香莺Wyman
Cross-stitchNetworksforMulti-taskLearning项目教程Cross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Network
- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- The hierarchical constant bandwidth server scheduler
mounter625
Linuxkernel网络服务器linuxkernel安全
ThePOSIXrealtimemodel,whichisimplementedintheLinuxkernel,canensurethatarealtimeprocessobtainstheCPUtimeitneedstogetitsjobdone.Itcanbelesseffective,though,whentherearemultiplerealtimeprocessescompeting
- CentOS 8解决ssh连接github时sign_and_send_pubkey失败问题
fangeqin
centossshgithub
我在一台centos8机器上安装git环境以连接到github,首先第一步需配置好ssh环境,因为我已经有一台Ubuntu机器已经配置好ssh环境,所以我ftpUbuntu机器取得id_rsaid_rsa.pubknown_hosts三个文件,然后执行命令:
[email protected]:your-username/learning_log.gitCloninginto'learn
- 彻底告别迷茫,探索机器学习的终极指南
wylee
机器学习人工智能
引言:信息洪流中的灯塔,你是否曾迷失方向?在这个AI技术日新月异的时代,机器学习(MachineLearning,ML)无疑是科技领域最耀眼、最具颠覆性的力量之一。从AlphaGo战胜人类围棋冠军,到智能推荐系统精准预测你的喜好,再到自动驾驶技术悄然改变出行方式,机器学习的力量无处不在。然而,对于无数渴望投身机器学习、或者希望在现有领域深耕的开发者而言,这股信息洪流也带来了前所未有的挑战:知识体系
- Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能自然语言处理
论文主要内容总结研究背景与问题大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。核心框架与方法提出因果感知大语言模型(Causal-awareLLMs),将结构因果模型(SCM)整合到决策过程中,采用“
- 人工智能安全(三)CODES:CodeS: Towards Building Open-source Language Models for Text-to-SQL
Joe_Ruc
人工智能安全人工智能安全语言模型
人工智能安全(三)CODES:CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL摘要介绍准备工作Taxt-to-SQL任务预训练语言模型STF和In-contextLearning架构A:增强预训练B:数据库Prompt的构建C:新领域的Adaptation摘要语言模型在将自然语言问题转换为SQL查询(文本到SQL)的任务中表现
- Learning to Incorporate Structure Knowledge for Image Inpainting
yijun009
图像修复论文
LearningtoIncorporateStructureKnowledgeforImageInpaintingMotivationMethods框架:AttentionLayerStructureEmbeddingLayerPyramidStructureLossExperimentreference原文链接:link.Motivation图像修复旨在用合理且充满细节的内容填充损坏的图像区域或
- 解密监督学习:带你玩转预测未来的魔术 (代码驱动)
小吉择
学习
你好,未来的数据魔法师!你是否曾对机器如何看懂图片、预测股价、甚至诊断疾病感到好奇?这一切的背后,很多时候都离不开机器学习中的一个核心分支——监督学习(SupervisedLearning)。今天,我们将一起揭开它的神秘面纱,并通过大量代码实例,让你亲手体验构建预测模型的乐趣!什么是监督学习?一切从“标签”开始想象一下,你正在教一个孩子看图识字。你会给他看一张苹果的图片,并告诉他:“这是苹果”。然
- [paper] Look Into Person
AlgoComp
paperreading计算机视觉
(CVPR2017)LookintoPerson:Self-supervisedStructure-sensitiveLearningandANewBenchmarkforHumanParsingPaper:http://www.linliang.net/files/CVPR17_LIP.pdfProject:http://hcp.sysu.edu.cn/lip/index.phpCode:htt
- 大规模胰腺癌检测通过非对比增强CT和深度学习| 文献速递-视觉通用模型与疾病诊断
有Li
深度学习人工智能
Title题目Large-scalepancreaticcancerdetectionvianon-contrastCTanddeeplearning大规模胰腺癌检测通过非对比增强CT和深度学习01文献速递介绍胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,通常在晚期和不可手术的阶段被检测到。早期或偶然发现与延长生存期相关,但使用单一测试筛查无症状个体的PDAC仍然不可行,因为假阳性的潜在危害和低
- 文献速递:深度学习乳腺癌诊断---使用深度学习改善乳腺癌诊断的MRI技术
有Li
深度学习人工智能
Title题目ImprovingbreastcancerdiagnosticswithdeeplearningforMRI使用深度学习改善乳腺癌诊断的MRI技术01文献速递介绍乳腺磁共振成像(MRI)是一种高度敏感的检测乳腺癌的方式,报道的敏感性超过80%。传统上,其在筛查中的使用被限制在高风险患者身上。新的证据支持在中等风险和普通风险女性中进行筛查MRI的作用4)。诊断MRI对于额外的指示也很有
- 大模型时代的具身智能系列专题(十)
视言
机器人具身智能deeplearning具身智能机器人计算机视觉深度学习人工智能
SergeyLevine团队SergeyLevine目前是UCBerkeley电气工程与计算机科学系的副教授,同时是RAIL(RoboticAI&LearningLab@BAIR)实验室主任。除了在Berkeley的教职,Levine也是GoogleBrain的研究员,他也参与了Google知名的机器人大模型PALM-E,RT1和RT2。SergeyLevine于2009年获得斯坦福大学计算机科学
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- CHES 2022 issue-4文章总结
打工小熊猫
密码学文献分类总结同态加密网络安全可信计算技术密码学安全威胁分析网络攻击模型
来源:https://ches.iacr.org/2022/acceptedpapers.php简要分类:分类文章编号后量子密码软硬件加速相关13,22,26侧信道攻防相关3,6,8-12,14,15,17,18,20,21,23,25,27,28,29,31,32同态相关241.WhenBadNewsBecomeGoodNews:TowardsUsableInstancesofLearningw
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的