【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面对学生成句和表现等数据可视化分析

1:导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['simhei']
plt.rcParams['font.serif'] = ['simhei']

import warnings
warnings.filterwarnings('ignore')

2:获取数据 并打印前四行

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第1张图片

from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname=r'C:\Windows\Fonts\SimHei.ttf',size=12)
sns.set(font=myfont.get_name())
df = pd.read_csv('.\data\StudentPerformance.csv')
df.head(4)

 属性列表对应含义如下

Gender  性别

Nationality  国籍

PlaceofBirth 出生地

Stageid 学校级别

Gradeid 年级

Sectionid  班级

Topic 科目

semester 学期

ralation 孩子家庭教育负责人

raisedhands 学生上课举手的次数

announcementviews 学生浏览在线课件的次数

discussion 学生参与课堂讨论的次数

parentanswersurvey 家长是否填了学校的问卷

parentschoolsatisfaction 家长对于学校的满意度

studentabsencedays         学生缺勤天数

3:数据可视化分析

接下来线修改表列名 换成中文

df.rename(columns={'gender':'性别','NationalITy':'国籍','PlaceofBirth':'出生地',
                   'StageID':'学段','GradeID':'年级','SectionID':'班级','Topic':'科目',
                  'Semester':'学期','Relation':'监管人','raisedhands':'举手次数',
                  'VisITedResources':'浏览课件次数','AnnouncementsView':'浏览公告次数',
                  'Discussion':'讨论次数','ParentAnsweringSurvey':'父母问卷',
                  'ParentschoolSatisfaction':'家长满意度','StudentAbsenceDays':'缺勤次数',
                   'Class':'成绩'},inplace=True)
df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df.columns

 显示学期和学段的取值

然后修改数据

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第2张图片

df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df['性别'].replace({'M':'男','F':'女'},inplace=True)
df['学期'].replace({'S':'春季','F':'秋季'},inplace=True)
df.head(4)

 查看空缺数据情况

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第3张图片

df.isnull().sum()

查看数据统计情况

 【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第4张图片

 然后按成绩绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第5张图片

sns.countplot(x = '成绩', order = ['L', 'M', 'H'], data = df, linewidth=2,edgecolor=sns.color_palette("dark",4))

 接着按性别绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第6张图片

sns.countplot(x = '性别', order = ['女', '男'],data = df)

 按科目绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第7张图片

sns.set_style('whitegrid')
sns.set(rc={'figure.figsize':(16,8)},font=myfont.get_name(),font_scale=1.5)
sns.countplot(x = '科目', data = df)

 按科目绘制不同成绩的计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第8张图片

按性别和成绩绘制计数柱状图

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第9张图片

sns.countplot(x = '性别', hue = '成绩',data = df, order = ['女', '男'], hue_order = ['L', 'M', 'H'])

按班级查看成绩分布比例

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第10张图片

sns.countplot(x = '班级', hue='成绩', data=df, hue_order = ['L','M','H'])
# 从这里可以看出虽然每个班人数较少,但是没有那个班优秀的人数的比例比较突出,这个特征可以删除

 分析4个表现和成绩的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第11张图片

# 了解四个课堂和课后表现与成绩的相关性
fig, axes = plt.subplots(2,2,figsize=(14,10))
sns.barplot(x='成绩', y='浏览课件次数',data=df,order=['L','M','H'],ax=axes[0,0])
sns.barplot(x='成绩', y='浏览公告次数',data=df,order=['L','M','H'],ax=axes[0,1])
sns.barplot(x='成绩', y='举手次数',data=df,order=['L','M','H'],ax=axes[1,0])
sns.barplot(x='成绩', y='讨论次数',data=df,order=['L','M','H'],ax=axes[1,1])
# 在sns.barplot中,默认的计算方式为计算平均值

 分析不同成绩学生的讨论情况

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第12张图片

# 了解举手次数与成绩之间的相关性
sns.set(rc={'figure.figsize':(8,6)},font=myfont.get_name(),font_scale=1.5)
sns.boxplot(x='成绩',y='讨论次数',data=df,order=['L','M','H'])

 分析举手次数和参加讨论次数的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第13张图片

# 了解四个课堂后量化表现之间的相关性
# fig,axes = plt.subplots(2,1,figsize=(10,10))
sns.regplot(x='举手次数',y='讨论次数',order =4,data=df)
# sns.regplot(x='浏览公告次数',y='浏览课件次数',order=4,data=df,ax=axes[1])   ,ax=axes[0]

 分析浏览课件次数 举手次数 浏览公告次数 讨论次数之间的相关性

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第14张图片

# Correlation Matrix 相关性矩阵
corr = df[['浏览课件次数','举手次数','浏览公告次数','讨论次数']].corr()
corr         

 最后将相关矩阵用热力图可视化显示

【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)_第15张图片

# Correlation Matrix Visualization 相关性可视化
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)

 创作不易 觉得有帮助请点赞关注收藏~~~

你可能感兴趣的:(数据分析与可视化,python,数据分析,python,信息可视化,matplotlib,Seaborn)