YOLOV5统计类别,(txt,json)

对于标注后的数据,我们希望可以关注到类别的分布是否均匀。由此,本文整理了对于标签格式为 txt、json 两种情况的数据进行类别统计的代码。

统计 txt 格式的类别

import matplotlib.pyplot as plt
import os
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

cn_path=open("")            # 存有类别的文本路径,如:"C:/Users/Admin/Desktop/classes.txt"

classes=[i.replace("\n","") for i in cn_path.readlines()]
print(classes)

class_dict = {i: 0 for i in classes}
print("类别数",len(class_dict))

def main(base_path):    
    FileList=os.listdir(base_path)
    for file in FileList:
        if file == "classes.txt":
            continue
        with open(base_path+file,'r') as f:
            for i in f.readlines():
                i = i.split(' ')            # 不切割的话,下面的 i[0] 只读取字符串的首字符
                class_dict[classes[int(i[0])]]+=1
    fig, ax = plt.subplots(figsize=(10, 8))
    plt.title('数量')
    plt.xticks(rotation=90)                 # 设置x轴文字方向旋转90度
    bars = plt.bar(class_dict.keys(), class_dict.values())
    # 绘制柱形图部分,参考博客:https://blog.csdn.net/MyName_Guan/article/details/110390312
    for b in bars:
        height = b.get_height()
        ax.annotate(f'{height}',
                    # xy控制的是,标注哪个点,x=x坐标+width/2, y=height,即柱子上平面的中间
                    xy=(b.get_x() + b.get_width() / 2, height),
                    xytext=(0, 3),  # 文本放置的位置,如果有textcoords,则表示是针对xy位置的偏移,否则是图中的固定位置
                    textcoords="offset points",  # 两个选项 'offset pixels','offset pixels'
                    va='bottom', ha='center'  # 代表verticalalignment 和horizontalalignment,控制水平对齐和垂直对齐。
                    )
    plt.savefig('./统计.png', # ⽂件名:png、jpg、pdf
                dpi = 100, # 保存图⽚像素密度
                # facecolor = 'violet', # 视图与边界之间颜⾊设置
                # edgecolor = 'lightgreen', # 视图边界颜⾊设置
                bbox_inches = 'tight')# 保存图⽚完整
    plt.show()

if __name__ == '__main__':
    base_path=""          # 存放 txt 的目录,末尾的反斜杠不可少,如:"C:/Users/Admin/Desktop/txt_label/"
    main(base_path)

统计 json 格式的类别

import json
import os
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

read_classes = open(r"")      # 存有类别的文本,如:"C:/Users/Admin/Desktop/classes.txt
classes_dict = {i.replace('\n', ''): 0 for i in read_classes.readlines()}
print('类别数:',len(classes_dict))

def main(base_path):
    
    filelist = os.listdir(base_path)
    filelist.sort()
    for name in filelist:
        filename = os.path.splitext(name)[0]
        filename_suffix = os.path.splitext(name)[1]
        if filename_suffix == ".json":
            fullname = base_path + filename + filename_suffix
            dataJson = json.load(open(f"{fullname}", encoding='UTF-8'))
            label_name = dataJson["shapes"]

            for _ in label_name:
                classes_dict[_['label']]+=1
    print(classes_dict)
    # 绘制柱形图部分,参考博客:https://blog.csdn.net/MyName_Guan/article/details/110390312
    fig, ax = plt.subplots(figsize=(10, 8))
    plt.title('数量')
    plt.xticks(rotation=90)             # 设置x轴文字方向旋转90度
    bars=plt.bar(classes_dict.keys(),classes_dict.values())
    for b in bars:
        height=b.get_height()
        ax.annotate('{}'.format(height),
                    # xy控制的是,标注哪个点,x=x坐标+width/2, y=height,即柱子上平面的中间
                    xy=(b.get_x() + b.get_width() / 2, height),
                    xytext=(0, 3),  # 文本放置的位置,如果有textcoords,则表示是针对xy位置的偏移,否则是图中的固定位置
                    textcoords="offset points",  # 两个选项 'offset pixels','offset pixels'
                    va='bottom', ha='center'  # 代表verticalalignment 和horizontalalignment,控制水平对齐和垂直对齐。
                    )
    plt.savefig('./统计.png', # ⽂件名:png、jpg、pdf
                dpi = 100, # 保存图⽚像素密度
                # facecolor = 'violet', # 视图与边界之间颜⾊设置
                # edgecolor = 'lightgreen', # 视图边界颜⾊设置
                bbox_inches = 'tight')# 保存图⽚完整
    plt.show()

if __name__ == '__main__':
    base_path= ""        # 存放 json 格式的目录,末尾反斜杠不可少,如:"C:/Users/Admin/Desktop/json_label/"
    main(base_path)

你可能感兴趣的:(python)