回文串和最长回文子串,关键在于dp数组的定义,以及中间的关系式和递推公式怎么表达。代码其实很简单,但最重要的是思路!!!
回文子串dp是布尔型,遍历所有情况找到所有的true,最长回文子序列则和最长相同子序列有点像,是可以进行删除的。
647. 回文子串
给你一个字符串 s
,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:s = "abc" 输出:3 解释:三个回文子串: "a", "b", "c"
示例 2:
输入:s = "aaa" 输出:6 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
提示:
1 <= s.length <= 1000
s
由小写英文字母组成1.确定dp数组(dp table)以及下标的含义
如图:
我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。
那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。
所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2.确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
3.dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
4.确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
class Solution {
public int countSubstrings(String s) {
int len = s.length();
int ans = 0;
//dp[i][j]:s字符串下标i到下标j的字串是否是一个回文串,即s[i, j]
boolean[][] dp = new boolean[len][len];
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
//当两端字母一样时,才可以两端收缩进一步判断
if (s.charAt(i) == s.charAt(j)) {
//i++,j--,即两端收缩之后i,j指针指向同一个字符或者i超过j了,必然是一个回文串
if (j - i < 3) {
dp[i][j] = true;
} else {
//否则通过收缩之后的字串判断
dp[i][j] = dp[i + 1][j - 1];
}
} else {//两端字符不一样,不是回文串
dp[i][j] = false;
}
}
}
//遍历每一个字串,统计回文串个数
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
if (dp[i][j]) ans++;
}
}
return ans;
}
}
516. 最长回文子序列
给你一个字符串 s
,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab" 输出:4 解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd" 输出:2 解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s
仅由小写英文字母组成1.确定dp数组(dp table)以及下标的含义
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
2.确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如图:
(如果这里看不懂,回忆一下dp[i][j]的定义)
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
3.dp数组如何初始化
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。
所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
4.确定遍历顺序
从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:
所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的。
j的话,可以正常从左向右遍历。
class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len][len];
for(int i = 0; i < len; i++){
dp[i][i] = 1;
}
for(int i = len - 1; i >= 0; i--){
for(int j = i + 1; j < len; j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][len - 1];
}
}