都有哪些维度可以进行数据库调优?简言之:
学员表
插 50万
条, 班级表
插 1万
条。
步骤1:建表
create database atguigudb2;
#班级表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
#学员表
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
步骤2:设置参数
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。
步骤3:创建函数
保证每条数据都不同。
#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;
随机产生班级编号
#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;
步骤4:创建存储过程
#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;
创建往class表中插入数据的存储过程
#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;
步骤5:调用存储过程
class
#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);
stu
#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);
步骤6:删除某表上的索引 创建存储过程
DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE ct INT DEFAULT 0;
DECLARE _index VARCHAR(200) DEFAULT '';
DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
OPEN _cur;
FETCH _cur INTO _index;
WHILE _index<>'' DO
SET @str = CONCAT("drop index " , _index , " on " , tablename );
PREPARE sql_str FROM @str ;
EXECUTE sql_str;
DEALLOCATE PREPARE sql_str;
SET _index='';
FETCH _cur INTO _index;
END WHILE;
CLOSE _cur;
END //
DELIMITER ;
执行存储过程
CALL proc_drop_index("dbname","tablename");
MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了访问高效数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。
大多数情况下都(默认)采用B+树来构建索引。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。
其实,用不用索引,最终都是优化器说了算。优化器是基于什么的优化器?基于cost开销(CostBaseOptimizer),它不是基于规则(Rule-BasedOptimizer),也不是基于语义。怎么样开销小就怎么来。另外,SQL语句是否使用索引,跟数据库版本、数据量、数据选择度都有关系。
系统中经常出现的sql语句如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=38;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classId=4 AND name = 'abcd';
建立索引前执行:(关注执行时间)
mysq1> SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classId=4 AND name = 'abcd ' ;
Empty set, 1 warning ( e.28 sec)
建立索引
CREATE INDEX idx_age oN student(age) ;
CREATE INDEX idx_age_classid ON student(age, classId);
CREATE INDEX idx_age_classid_name ON student(age, classId, name) ;
建立索引后执行:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classId=4 AND name = 'abed ' ;
Empty set,1 warning (0.e1 sec)
可以看到,创建索引前的查询时间是0 .28秒,创建索引后的查询时间是0.01秒,索引帮助我们极大的提高了查询效率。
在MySQL建立联合索引时会遵守 最佳左前缀匹配原则
,即最左优先,在检索数据时从联合索引的最左边开始匹配。
举例1:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=38 AND student.name = 'abcd';
举例2:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name = ' abed ;
举例3:索引idx_age_classid_name还能否正常使用?
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE classid=4 AND student .age=30 AND student.name='abcd ' ;
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student .name ='abcd;
结论:MySQL可以为多个字段创建索引,一个索引可以包括16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有使用这些字段中第1个字段时,多列(或联合)索引不会被使用。
拓展:Alibaba《Java开发手册》 索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
对于一个使用InnoDB
存储引擎的表来说,在我们没有显示的创建索引时,表中的数据实际上都是存储在聚簇索引
的叶子节点的。而记录又存储在数据页中的,数据页和记录又是按照记录主键值从小到大
的顺序进行排序,所以如果我们插入
的记录的主键值是依次增大
的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽小忽大
的话,就比较麻烦了,可能会造成页面分裂
和记录移位
。
假设某个数据页存储的记录已经满了,它存储的主键值在 1~100 之间:
如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂
成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗
!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增
,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT
,让存储引擎自己为表生成主键,而不是我们手动插入 ,比如: person_info
表:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id
拥有 AUTO_INCREMENT
属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。
1)这俩条SQL哪种写法更好?(第1条好,能够使用索引)
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc'; --索引失效
2)创建索引
CREATE INDEX idx_name ON student(NAME);
3)第一种:索引优化生效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)
第二种:索引优化失效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)
type为“ALL”,表示没有使用到索引,查询时间为 3.62
秒,查询效率较之前低很多。
再举例:
student表的字段stuno上设置有索引
CREATE INDEX idx_sno ON student(stuno);
EXPLAIN SELECT SQL_NO_CACHE id,stuno,NANE FROM student WHERE stuno+1 = 900001; -- 索引失效
EXPLAIN SELECT SQL_NO_CACHE id,stuno,NANE FROM student WHERE stuno = 900000;
第一种,索引失效
EXPLAIN SELECT SQL_NO_CACHE id,stuno,name FROM student WHERE stuno+1 = 900001; -- 索引失效
你能看到如果对索引进行了表达式计算,索引就失效了。这是因为我们需要把索引字段的取值都取出来,然后依次进行表达式的计算来进行条件判断,因此采用的就是全表扫描的方式,运行时间也会慢很多
第二种,索引优化生效
EXPLAIN SELECT SQL_NO_CACHE id,stuno,name FROM student WHERE stuno = 900000;
下列哪个sql语句可以用到索引。(假设name字段上设置有索引)
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
# 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';
1)如果系统经常出现的sql如下:
ALTER TABLE student DROP INDEX idx_name;
ALTER TABLE student DROP INDEX idx_age;
ALTER TABLE student DROP INDEX idx_age_classid;
EXPLAIN SELECT SQL_NO_CACHE * FROM student
WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ;
student.classId>20的右侧的student.name = 'abc’的索引就会失效
2)那么索引 idx_age_classid_name这个索引还能正常使用么?
不能,范围右边的列不能使用。比如:(<)(=)(>)(>=)和between等
如果这种sql出现较多,应该建立:
create index idx_age_name_classid on student(age,name,classid);
将范围查询条件放置语句最后:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20 ;
应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后。(创建的联合索引中,务必把范围涉及到的字段写在最后)
3)效果
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.classId>20 AND student.name = " abc" ;
2.7 不等于(!= 或者<>)索引失效
理解:一般情况下, 条件 != <>
得到的数据太多了,导致回表的次数太多,成本太高,总的成本可能超过全表扫描,因为查询优化器会选择成本较低的查询顺序,即执行全表扫描;
为name字段创建索引
CREATE INDEX idx_name ON student(NAME);
查看索引是否失效
explain select * from student where name <> 'abc';
当sql语句中有!=或者<>会出现索引失效的问题,尝试改写为等于,或采用覆盖索引
理解:一般情况下, 条件 is not null得到的数据太多了,导致回表的次数太多,成本太高,总的成本可能超过全表扫描,因为查询优化器会选择成本较低的查询顺序,即执行全表扫描;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;
结论:最好在设计数据表的时候就将字段设置为 NOT NULL 约束,比如你可以将INT类型的字段,默认值设置为0。将字符类型的默认值设置为空字符串(‘’)
拓展:同理,在查询中使用not like也无法使用索引,导致全表扫描
1)索引有效
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE NAME LIKE 'ab% ';
2)索引失效
EXPLAIN SELECT SQL_No_CACHE * FROM student WHERE NAME LIKE '%ab% ' ;
拓展:Alibaba《Java开发手册》
【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
# 未使用到索引(此时的age字段有索引,classid没有索引)
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100;
#使用到索引(此时的age、classid字段都有索引)
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR name = 'Abel';
因为age字段和name字段上都有索引,所以查询中使用了索引。你能看到这里使用到了 index_merge
,简单来说index_merge就是对age和name分别进行了扫描,然后将这两个结果集进行了合并。这样做的好处就是 避免了全表扫描
。
在WHERE子句中,如果在OR前的条件列进行了索引,而在OR后的条件列没有进行索引,那么索引会失效。也就是说,OR前后的两个条件中的列都是索引时,查询中才使用索引。
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的字符集进行比较前需要进行转换会造成索引失效。
一般性建议:
总之,书写sQL语句时,尽量避免造成索引失效的情况。
#分类
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);
向分类表中添加20条记录:
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO atguigudb2.type(card) VALUES(FLOOR(1 + (RAND() * 20)));
向图书表中添加20条记录:
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
下面开始 EXPLAIN 分析:
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
结论:type 有All 添加索引优化
ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM
type
LEFT JOIN book ON type.card = book.card;
可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引
。
ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM
type
LEFT JOIN book ON type.card = book.card;
接着:
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM
type
LEFT JOIN book ON type.card = book.card;
先说结论:
drop index X on type;
drop index Y on book; -- (如果已经删除了可以不用再执行该操作)
换成 inner join(MySQL自动选择驱动表)
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
添加索引优化:
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
接着:
DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
接着:
ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM
type
INNER JOIN book ON type.card=book.card;
结论1:对于内连接来说,查询优化器可以决定谁来作为驱动表,谁作为被驱动表出现
结论2:对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表
结论3:对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。小表驱动大表
join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会非常长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。
驱动表就是主表,被驱动表就是从表、非驱动表。
对于内连接来说:
SELECT * FROM A JOIN B ON ...
A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。
对于外连接来说:
SELECT * FROM A LEFT JOIN B ON ...
#或
SELECT * FROM B RIGHT JOIN A ON ...
通常,大家会认为A就是驱动表,B就是被驱动表。但也未必。测试如下:
CREATE TABLE a(
f1 INT,f2 INT,
INDEX(f1)
)ENGINE=INNODB;
CREATE TABLE b(f1 INT,f2 INT)ENGINE=INNODB;
INSERT INTO a VALUES( 1,1),(2,2),(3,3),(4,4) , (5,5),(6,6);
测试1
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) WHERE (a.f2=b.f2);
测试2
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) AND (a.f2=b.f2);
算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result…以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:
可以看到这种方式效率是非常低的,以上述表A数据100条,表,B数据1000条计算,则A*B= 10万次。开销统计如下:
当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join优化算法。
Index Nested-Loop Join其优化的思路主要是为了减少内层表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内层表的每条记录去进行比较,这样极大的减少了对内层表的匹配次数。
驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。
如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。
我们来看一下这个语句:
EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a);
如果直接使用join语句,MySQL优化器可能会选择表t1或t2作为驱动表,这样会影响我们分析SQL语句的执行过程。所以,为了便于分析执行过程中的性能问题,我改用 straight_join 让MySQL使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去join。在这个语句里,t1 是驱动表,t2是被驱动表。
可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:
从表t1中读入一行数据 R;
从数据行R中,取出a字段到表t2里去查找;
取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
重复执行步骤1到3,直到表t1的末尾循环结束。 这个过程是先遍历表t1,然后根据从表t1中取出的每行数据中的a值,去表t2中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称NLJ。
它对应的流程图如下所示:
如果存在索引,那么会使用index的方式进行join,如果join的列没有索引,被驱动表要扫描的次数太多了。每次访问被驱动表,其表中的记录都会被加载到内存中,然后再从驱动表中取一条与其匹配,匹配结束后清除内存,然后再从驱动表中加载一条记录,然后把被驱动表的记录再加载到内存匹配,这样周而复始,大大增加了IO的次数。为了减少被驱动表的IO次数,就出现了Block Nested-Loop Join的方式。
不再是逐条获取驱动表的数据,而是一块一块的获取,引入了join buffer缓冲区,将驱动表join相关的部分数据列(大小受join buffer的限制)缓存到join buffer中,然后全表扫描被驱动表,被驱动表的每一条记录一次性和join buffer中的所有驱动表记录进行匹配(内存中操作),将简单嵌套循环中的多次比较合并成一次,降低了被驱动表的访问频率。
注意:
这里缓存的不只是关联表的列,select后面的列也会缓存起来。
在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列,所以尽量避免 select * …的写法
参数设置:
block_nested_loop
通过 show variables like '%optimizer_switch%’
查看 block_nested_loop
状态。默认是开启的。
join_buffer_size
驱动表能不能一次加载完,要看join buffer能不能存储所有的数据,默认情况下 join_buffer_size=256k
。
join_buffer_size的最大值在32位系统可以申请4G,而在64位操做系统下可以申请大于4G的Join Buffer空间(64位Windows除外,其大值会被截断为4GB并发出警告)。
从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join
Nested Loop:对于被连接的数据子集较小的情况下,Nested Loop是个较好的选择。
Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列值,然后扫描较大的表并探测散列值,找出与Hash表匹配的行。
这种方式适用于较小的表完全可以放入内存中的情况,这样总成本就是访问两个表的成本之和。
在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。
它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。Hash Join只能应用于等值连接,这是由Hash的特点决定的。
1、整体效率比较: INLJ >BNLJ > SNLJ
2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(经过过滤条件筛选后,各个表的剩余结果集大小开始比较,表行数 * 每行大小,谁的结果集小谁就是小表)
select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=108;#推荐
select t1.b,t2.* from t2 straight.join t1 on (t1.b=t2.b) where t2.id<=108;#不推荐
3、为被驱动表匹配的条件增加索引(减少内层表的循环匹配次数)
4、增大join buffer size的大小(一次缓存的数据越多,那么内层表的扫表次数就越少)
5、减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多)
6、不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询
7、保证被驱动表的JOIN字段已经创建了索引
8、需要JOIN 的字段,数据类型保持绝对一致。
9、LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
10、INNER JOIN 时,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表;在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表;在两个表的连接条件都不存在索引的情况下,会选择小表作为驱动表
11、不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询
12、衍生表建不了索引
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。子查询可以一次性完成很多 逻辑上需要多个步骤才能完成的SQL操作
。
子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:
① 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好。
举例1:查询学生表中是班长的学生信息
使用子查询
#创建班级表中班长的索引
CREATE INDEX idx_monitor oN class ( monitor) ;
explain select * from student stu1
where stu1.stuno in (
select monitor
from class c
where monitor is not null
);
-- is not null 不一定导致索引失效,是is not null 的数据太多了回表的次数太多,数据量太大,成本太高的情况,查询优化器会强制执行全表扫描
推荐:使用多表查询
explain select stu1.*
from student stu1
join class c
on stu1.stuno = c.monitor
where c.monitor is not null;
举例2:取所有不为班长的同学
不推荐
explain select SQL.NO.CACHE a.*
from student a
where a.stuno NOT IN (
SELECT monitor
from class b
where monitor IS NOT NULL
)
推荐
explain select SQL_NO_CACHE a.*
from student a left outer join class b
on a.stuno = b.monitor
where b.monitor is null;
结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?
回答:
在MySQL中,支持两种排序方式,分别是 FileSort 和 Index 排序。
Index排序中,索引可以保证数据的有序性,不需要再进行排序,效率更高。
FileSort排序则一般在 内存中 进行排序,占用CPU 较多 。如果待排结果较大,会产生临时文件I/O到磁盘进行排序的情况,效率较低。
优化建议:
SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描,在 ORDER BY 子句避免使用 File Sort 排序。当然,某些情况下全表扫描,或者 File Sort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
无法使用 Index 时,需要对 File Sort 方式进行调优。
删除student表和class表中已创建的非主键索引。
DROP INDEX idx_monitor ON class;
DROP INDEX idx_cid ON student;
DROP INDEX idx_age ON student;
DROP INDEX idx_name ON student;
DROP INDEX idx_age_name_classid ON student ;
DROP INDEX idx_age_classid_name ON student ;
以下是否能使用到索引,能否去掉 using filesort
过程一:不加索引
explain select SQL_NO_CACHE * FROM student ORDER BY age,classId;
explain select SQL_NO_CACHE * FROM student ORDER BY age,classId limit 10;
过程二:加索引 order by时不limit,索引失效
-- 创建索引
CREATE INDEX idx_age_classId_name ON student(age,classId,name);
-- 不限制,索引失效
EXPLAIN SELECT SQL_NO_CACHE * FROM student ORDER BY age,classId;
-- 覆盖索引
EXPLAIN SELECT SQL_NO_CACHE age, classid FROM student ORDER BY age,classid;
-- 增加limitg过滤条件,使用上索引了
explain select SQL_NO_CACHE * FROM student ORDER BY age,classId limit 10;
过程三:order by时顺序错误,索引失效
#创建索引age,classid,stuno
CREATE INDEX idx_age_classid_stuno ON student (age,classid,stuno);
以下哪些索引失效?
EXPLAIN SELECT * FROM student ORDER BY classid LIMIT 10; --失效
EXPLAIN SELECT * FROM student ORDER BY classid,NAME LIMIT 10; --失效
EXPLAIN SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10;
EXPLAIN SELECT * FROM student ORDER BY age,classid LIMIT 10;
EXPLAIN SELECT * FROM student ORDER BY age LIMIT 10;
过程四:order by时规则不一致, 索引失效 (顺序错,不索引;方向反,不索引)
#创建索引age,classid,stuno
CREATE INDEX idx_age_classid_stuno ON student (age,classid,stuno);
CREATE INDEX idx_age_classid_stuno ON student (age,classid,name);
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10; --索引默认为升序,但此处用了降序,方向相反了
EXPLAIN SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10; -- 索引的顺序错误
EXPLAIN SELECT * FROM student ORDER BY age ASC,classid DESC LIMIT 10; -- 索引的方向错误
EXPLAIN SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10; -- 能成功用上索引,age和classid先降序找到对应的主键,回表时逆序变量即可
过程五:无过滤,不索引
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid;
EXPLAIN SELECT * FROM student WHERE age=45 ORDER BY classid,NAME;
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age;
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age LIMIT 10; --优化器先根据age索引排序,在找classid的索引
CREATE INDEX idx_cid ON student(classid);
EXPLAIN SELECT * FROM student WHERE classid=45 ORDER BY age;
小结:
INDEX a_b_c(a,b,c)
order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE a = const ORDER BY b,c /丢失a索引/
- WHERE a = const ORDER BY c /丢失b索引/
- WHERE a = const ORDER BY a,d /d不是索引的一部分/
- WHERE a in (…) ORDER BY b,c /对于排序来说,多个相等条件也是范围查询/
ORDER BY子句,尽量使用Index方式排序,避免使用FileSort方式排序。 执行案例前先清除student上的索引,只留主键:
DROP INDEX idx_age ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_age_classid_name ON student;
或者
call proc_drop_index('atguigudb2','student');
场景:查询年龄为30岁的,且学生编号小于101000的学生,按用户名称排序
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
查询结果如下:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
+---------+--------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+--------+--------+------+---------+
| 922 | 100923 | elTLXD | 30 | 249 |
| 3723263 | 100412 | hKcjLb | 30 | 59 |
| 3724152 | 100827 | iHLJmh | 30 | 387 |
| 3724030 | 100776 | LgxWoD | 30 | 253 |
| 30 | 100031 | LZMOIa | 30 | 97 |
| 3722887 | 100237 | QzbJdx | 30 | 440 |
| 609 | 100610 | vbRimN | 30 | 481 |
| 139 | 100140 | ZqFbuR | 30 | 351 |
+---------+--------+--------+------+---------+
8 rows in set, 1 warning (3.16 sec)
结论:
type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
优化思路:
方案一: 为了去掉filesort我们可以把索引建成
#创建新索引
CREATE INDEX idx_age_name ON student(age,NAME);
方案二: 尽量让where的过滤条件和排序使用上索引 建一个三个字段的组合索引:
DROP INDEX idx_age_name ON student;
CREATE INDEX idx_age_stuno_name ON student (age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
mysql> SELECT SQL_NO_CACHE * FROM student
-> WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id | stuno | name | age | classId |
+-----+--------+--------+------+---------+
| 167 | 100168 | AClxEF | 30 | 319 |
| 323 | 100324 | bwbTpQ | 30 | 654 |
| 651 | 100652 | DRwIac | 30 | 997 |
| 517 | 100518 | HNSYqJ | 30 | 256 |
| 344 | 100345 | JuepiX | 30 | 329 |
| 905 | 100906 | JuWALd | 30 | 892 |
| 574 | 100575 | kbyqjX | 30 | 260 |
| 703 | 100704 | KJbprS | 30 | 594 |
| 723 | 100724 | OTdJkY | 30 | 236 |
| 656 | 100657 | Pfgqmj | 30 | 600 |
| 982 | 100983 | qywLqw | 30 | 837 |
| 468 | 100469 | sLEKQW | 30 | 346 |
| 988 | 100989 | UBYqJl | 30 | 457 |
| 173 | 100174 | UltkTN | 30 | 830 |
| 332 | 100333 | YjWiZw | 30 | 824 |
+-----+--------+--------+------+---------+
15 rows in set, 1 warning (0.00 sec)
结果竟然有 filesort的 sql 运行速度,超过了已经优化掉 filesort的
sql,而且快了很多,几乎一瞬间就出现了结果。
原因:所有的排序都是在条件过滤之后才执行的。所以,如果条件过滤掉大部分数据的话,剩下几百几千条数据进行排序其实并不是很消耗性能,即使索引优化了排序,但实际提升性能很有限。相对的stuno<101000这个条件,如果没有用到索引的话,要对几万条的数据进行扫描,这是非常消耗性能的,所以索引放在这个字段上性价比最高,是最优选择。
结论:
两个索引同时存在,mysql自动选择最优的方案。(对于这个例子,mysql选择idx_age_stuno_name)。但是, 随着数据量的变化,选择的索引也会随之变化的 。
当【范围条件】和【group by 或者 order by】的字段出现二选一时,优先观察条件字段的过滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上。反之,亦然。
思考:这里我们使用如下索引,是否可行?
DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);
排序的字段若如果不在索引列上,则filesort会有两种算法:双路排序和单路排序
双路排序 (慢)
① MySQL 4.1之前是使用双路排序 ,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和order by 列 ,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取对应的数据输出
② 从磁盘取排序字段,在buffer进行排序,再从 磁盘取其他字段 。
取一批数据,要对磁盘进行两次扫描,众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序。
单路排序 (快)
①从磁盘读取查询需要的 所有列 ,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
②结论及引申出的问题
由于单路是后出的,总体而言好过双路
但是用单路有问题
1)在sort_buffer中,单路比多路要多 占用很多空间,因为单路是把所有字段都取出,所以有可能取出的数据的总大小超出了sort_buffer的容量,导致每次只能取sort_buffer容量大小的数据,进行排序(创建tmp文件,多路合并),排完再取sort_buffer容量大小,再排…从而多次l/O。
2)单路本来想省一次I/O操作,反而导致了大量的I/O操作,反而得不偿失。
③优化策略
1)尝试提高 sort_buffer_size
不管用哪种算法,提高这个参数都会提高效率,要根据系统的能力去提高,因为这个参数是针对每个进程(connection)的1M-8M之间调整。MySQL5.7,InnoDB存储引擎默认值是1048576字节,1MB。
show variables like ‘%sort_buffer_size%’;
2)尝试提高 max_length_for_sort_data
提高这个参数,会增加用改进算法的概率。
SHow VARIABLES LIKE '%max_length_for_sort_data% ’ ; #默认1024字节
但是如果设的太高,数据总容量超出sort_buffer_size的概率就增大,明显症状是高的磁盘/O活动和低的处理器使用率。如果需要返回的列的总长度大于max_length_for_sort_data,使用双路算法,否则使用单路算法。1024-8192字节之间调整
3)Order by 时select * 是一个大忌。最好只Query需要的字段。
当Query的字段大小总和小于max_length_for_sort_data,而且排序字段不是TEXT|BLOB类型时,会用改进后的算法――单路排序,否则用老算法――多路排序。
两种算法的数据都有可能超出sort_buffer_size的容量,超出之后,会创建tmp文件进行合并排序,导致多次I/O,但是用单路排序算法的风险会更大一些,所以要提高sort_buffer_size。
group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
group by 先排序再分组,遵照索引建的最佳左前缀法则
当无法使用索引列,可以增大max_length_for_sort_data和sort_buffer_size参数的设置
where效率高于having,能写在where限定的条件就不要写在having中了
减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 -2000010的记录,其他记录丢弃,查询排序的代价非常大。
explain select * from student limit 2000000,10;
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a
WHERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是,索引列+主键包含SELECT 到 FROM之间查询的列。
举例1:
DROP INDEX idx_age_stuno ON student;
CREATE INDEX idx_age_name ON student (age,NAME);
EXPLAIN SELECT * FROM student WHERE age <> 20; --没有用到索引
EXPLAIN SELECT age,NAME FROM student WHERE age <> 20; --覆盖索引
举例2:
explain select * from student where name like '%abc'; -- 没有用上索引
create index idx_age_name on student(age,name);
explain select id,age,name from student where name like '%abc'; --覆盖索引
好处:
1)避免Innodb表进行索引的二次查询(回表)
Innodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询,减少了IO操作,提升了查询效率。
2)可以把随机IO变成顺序IO加快查询效率
由于覆盖索引是按键值的顺序存储的,对于I0密集型的范围查找来说,对比随机从磁盘读取每一行的数据lO要少的多,因此利用覆盖索引在访问时也可以把磁盘的 随机读取的I0 转变成索引查找的 顺序IO 。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
弊端:
索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。
有一张教师表,表定义如下:
create table teacher(
ID bigint unsigned primary key,
email varchar(64),
)engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做 全表扫描。
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。
以及
如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:
1)从index1索引树找到满足索引值是’[email protected]’的这条记录,取得ID2的值;
2)到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
3)取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email='[email protected]’的条件了,循环结束。
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是index2(即email(6)索引结构),执行顺序是这样的:
1)从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
2)到主键上查到主键值是ID1的行,判断出email的值不是’[email protected]’,这行记录丢弃;
3)取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然后判断,这次值对了,将这行记录加入结果集;
4)重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。
也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前面已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
结论: 使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
如果没有ICP,存储引擎会遍历索引以定位基表中的行,并将它们返回给MySQL服务器,由MySQL服务器评估 WHERE 后面的条件是否保留行。
启用ICP后,如果部分 WHERE 条件可以仅使用索引中的列进行筛选,则MySQL服务器会把这部分WHERE条件放到存储引擎筛选。然后,存储引擎通过使用索引条目来筛选数据,并且只有在满足这一条件时才从表中读取行。
1)好处:ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数。
2)但是,ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。
默认情况下启用索引条件下推。可以通过设置系统变量optimizer_switch控制:index_condition_pushdown
#打开索引下推
SET optimizer_switch ='index_condition_pushdown=on' ;
关闭索引下推
SET optimizer_switch= "index_condition_pushdown=off' ;
当使用索引条件下推时,EXPLAIN语句输出结果中 Extra 列内容显示为 Using index condition 。
建表
CREATE TABLE `people` (
`id` INT NOT NULL AUTO_INCREMENT,
`zipcode` VARCHAR(20) COLLATE utf8_bin DEFAULT NULL,
`firstname` VARCHAR(20) COLLATE utf8_bin DEFAULT NULL,
`lastname` VARCHAR(20) COLLATE utf8_bin DEFAULT NULL,
`address` VARCHAR(50) COLLATE utf8_bin DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `zip_last_first` (`zipcode`,`lastname`,`firstname`)
) ENGINE=INNODB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb3 COLLATE=utf8_bin;
插入数据
INSERT INTO `people` VALUES
('1', '000001', '三', '张', '北京市'),
('2', '000002', '四', '李', '南京市'),
('3', '000003', '五', '王', '上海市'),
('4', '000001', '六', '赵', '天津市');
为该表定义联合索引zip_last_first (zipcode,lastname,firstname)。如果我们知道了一个人的邮编,但是不确定这个人的姓氏,我们可以进行如下检索:
EXPLAIN SELECT * FROM people
WHERE zipcode='000001'
AND lastname LIKE '%张%'
AND address LIKE '%北京市%';
执行查看SQL的查询计划,Extra 中显示了 Using index condition,这表示使用了索引下推。另外,Using where表示条件中包含需要过滤的非索引列的数据,即address LIKE "%北京市%'这个条件并不是索引列,需要在服务端过滤掉。
如果不想出现Using where,把address LlKE %北京市%'去掉即可
这个表中存在两个索引,分别是:
主键索引(简图)
二级索引zip_last_first(简图,这里省略了数据页等信息)
下面我们关闭ICP查看执行计划
mysql> SET optimizer_switch = 'index_condition_pushdown=off' ;
Query OK,0 rows affected (8.02秒)
查看执行计划,已经没有了Using index condition,表示没有使用ICP
EXPLAIN SELECT * FROM people
WHERE zipcode='000001'
AND lastname LIKE '%张%'
AND address LIKE '%北京市%';
创建存储过程,主要目的就是插入很多0000O1的数据,这样查询的时候为了在存储引擎层做过滤,减少IO,也为了减少缓冲池(缓存数据页,没有lO)的作用。
DELIMITER //
CREATE PROCEDURE insert_people( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO people ( zipcode,firstname,lastname,address ) VALUES ('000001', '六', '赵', '天津市');
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
–调用存储过程,向people表中添加1000000条数据,测试ICP开启和关闭状态下的性能
CALL insert_people(1000000);
首先打开profiling
set profiling = 1;
执行SQL语句,此时默认打开索引下推。
SELECT * FROM people WHERE zipcode='088801’AND lastname LIKE ‘%张%’;
再次执行sQL语句,不使用索引下推
SELECT /* no_icp (people)*/ * FROM people WHERE zipcode=' 800801’ AND lastname LIKE‘%张%';
查看当前会话所产生的所有profiles
show profiles \G;
结果如下:
1)如果表访问的类型为range、ref、eq_ref和ref_or_null可以使用ICP
2)ICP可以用于 InnoDB 和 MyISAM 表,包括分区表InnoDB和 MyISAM表
3)对于 InnoDB 表,ICP仅用于 二级索引 。ICP的目标是减少全行读取次数,从而减少I/O操作。
4)当SQL使用覆盖索引时,不支持ICP。因为这种情况下使用ICP不会减少I/O。
5)相关子查询的条件不能使用ICP
在不使用ICP索引扫描的过程:
storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层
server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行。
使用ICP扫描的过程:
storage层:首先将index key条件满足的索引记录区间确定,然后在索引上使用index filter进行过滤。将满足的index filter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回表、也不会返回server层。
server 层:对返回的数据,使用table filter条件做最后的过滤。
使用ICP和没有使用ICP的成本差别 没有使用ICP,存储层多返回了需要被index filter过滤掉的整行记录 使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。 ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。
ICP的使用条件:
① 只能用于二级索引(secondary index)
②explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null 。
③ 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
④ ICP可以用于MyISAM和InnnoDB存储引擎
⑤ MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
⑥ 当SQL使用覆盖索引时,不支持ICP优化方法。
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢? 假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
假设,执行查询的语句是 select id from test where k=5。
①对于普通索引来说,查找到满足条件的第一个记录(500,5)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
②对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微 。
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。 当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页 会触发merge外,系统有 后台线程会定期 merge。在 数据库正常关闭(shutdown) 的过程中,也会执行merge操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存 ,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。
如果要在这张表中插入一个新记录(400,4)的话,InnoDB的处理流程是怎样的?
①普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对 更新性能 的影响。所以,建议你 尽量选择普通索引 。
②在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化还是很明显的。
③如果所有的更新后面,都马上 伴随着对这个记录的查询 ,那么你应该 关闭change buffer 。而在其他情况下,change buffer都能提升更新性能。
④由于唯一索引用不上change buffer的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
1)首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
2)然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。
问题: 不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
回答:
索引是个前提,其实选择与否还会要看表的大小。你可以将选择的标准理解为小表驱动大表。在这种方式下效率是最高的
比如下面这样:
SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXISTS (SELECT cc FROM B WHERE B.cc=A.cc)
当A小于B时,用EXISTS。因为EXISTS的实现,相当于外表循环,实现的逻辑类似于:
for i in B
for j in A
if j.cc == i.cc then...
当B小于A时用IN,因为实现的逻辑类似于:
for i in B
for j in A
if j.cc == i.cc then...
哪个表小就用哪个表来驱动,A表小就用EXISTS,B表小就用IN。
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和 SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
答:
前提:如果你要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以。
环节1:COUNT()和COUNT(1)都是对所有结果进行COUNT,COUNT()和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有WHERE子句,则是对所有符合筛选条件的数据行进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计。
环节2:如果是MyISAM存储引擎,统计数据表的行数只需要O(1)的复杂度,这是因为每张MyISAM的数据表都有一个meta信息存储了row_count值,而一致性则是由表级锁来保证的。
如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像MyISAM一样,维护一个row_count变量,因此需要采用扫描全表,是O(n)的复杂度,进行循环+计数的方式来完成统计。
环节3:在InnoDB引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)和COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。
如果有多个二级索引,会使用key_len小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过查询数据字典将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用覆盖索引
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上LIMIT 1的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上LIMIT 1了。
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
回滚段上用于恢复数据的信息
被程序语句获得的锁
redo / undo log buffer 中的空间
管理上述 3 种资源中的内部花费
略