数据分析中常见的10种数据编码方式

目录

数值型数据编码 

1 - 使用自定义函数 + 循环遍历

2 - 使用 map + 自定义函数

3 - 使用 apply + 匿名函数

4 - 使用cut

5 - 使用 sklearn 二值化

 文本型数据编码

6 - 使用 replace

7 - 使用map

8 - 使用astype

9 - 使用 sklearn

10 - 使用factorize


在使用Python进行机器学习时,很多算法都需要我们对分类特征进行转换(编码),即根据某一列的值,新增(修改)一列。

这个操作在pandas中也有多种解决方案,本文就将介绍十种方法,代码拿走就用,希望你在遇到不同类型的数据时,可以灵活使用。

下面先创建用于示例的数据:

import pandas as pd
df = pd.DataFrame({
    "Sex": pd.Series(['Male','Female','Male','Male','Male','Female','Male','Male','Female','Female']),
    "Course Name": pd.Series(['Python','Java','C','Sql','Linux','Python','Python','Java','C','Php']),
    "Score":[95,85,75,65,55,95,75,65,55,85]})

df

数据分析中常见的10种数据编码方式_第1张图片

数值型数据编码 

1 - 使用自定义函数 + 循环遍历

首先然是最简单,最笨的方法,自己写一个函数来转换数据,并用循环遍历,肯定就是一个def加一个for

df1 = df.copy()

def myfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'
    
df1['Score_Label'] = None
for i in range(len(df1)):
    df1.iloc[i,3] = myfun(df1.iloc[i,2])
    
df1

数据分析中常见的10种数据编码方式_第2张图片

这段代码,相信所有人都能看懂,简单好想但比较麻烦

有没有更简单的办法呢?pandas当然提供了很多高效的操作的函数,继续往下看。

2 - 使用 map + 自定义函数

现在,可以使用map来干掉循环(虽然本质上也是循环)

df2 = df.copy()

def mapfun(x):
    if x>90:
        return 'A'
    elif x>=80 and x<90:
        return 'B'
    elif x>=70 and x<80:
        return 'C'
    elif x>=60 and x<70:
        return 'D'
    else:
        return 'E'

df2['Score_Label'] = df2['Score'].map(mapfun)
df2

 数据分析中常见的10种数据编码方式_第3张图片

3 - 使用 apply + 匿名函数

如果还想简洁代码,可以使用自定义函数+apply来干掉自定义函数(结果和上面是一致的,只不过这么写容易被打。)

df3 = df.copy()
df3['Score_Label'] = df3['Score'].apply(lambda x: 'A' if x > 90 else (
    'B' if 90 > x >= 80 else ('C' if 80 > x >= 70 else ('D' if 70 > x >= 60 else 'E'))))
df3

数据分析中常见的10种数据编码方式_第4张图片

4 - 使用cut

现在,让我们继续了解更高级的pandas函数,依旧是对 Score 进行编码,使用pd.cut,并指定划分的区间后,可以直接帮你分好组

df4 = df.copy()
bins = [0, 59, 70, 80, 100]
df4['Score_Label'] = pd.cut(df4['Score'], bins)
df4

数据分析中常见的10种数据编码方式_第5张图片

也可以直接使用labels参数来修改对应组的名称,是不是方便多了

df4['Score_Label_new'] = pd.cut(df4['Score'], bins, labels=[
                                'low', 'middle', 'good', 'perfect'])
df4

 数据分析中常见的10种数据编码方式_第6张图片

5 - 使用 sklearn 二值化

既然是和机器学习相关,sklearn肯定跑不掉,如果需要新增一列并判定成绩是否及格,就可以使用Binarizer函数,代码也是简洁好懂

from sklearn.preprocessing import Binarizer

df5 = df.copy()
binerize = Binarizer(threshold = 60)
trans = binerize.fit_transform(np.array(df1['Score']).reshape(-1,1))
df5['Score_Label'] = trans

df5

 数据分析中常见的10种数据编码方式_第7张图片

 文本型数据编码

下面介绍更常见的,对文本数据进行转换打标签。例如新增一列,将性别男、女分别标记为0、1

6 - 使用 replace

首先介绍replace,但要注意的是,上面说过的自定义函数相关方法依旧是可行的

df6 = df.copy()
df6['Sex_Label'] = df6['Sex'].replace(['Male','Female'],[0,1])
df6

数据分析中常见的10种数据编码方式_第8张图片

上面是对性别操作,因为只有男女,所以可以手动指定0、1,但要是类别很多,也可以使用pd.value_counts()来自动指定标签,例如对Course Name列分组

df6 = df.copy()
value = df6['Course Name'].value_counts()
value_map = dict((v, i) for i,v in enumerate(value.index))
df6['Course Name_Label'] = df6.replace({'Course Name':value_map})['Course Name']
df6

数据分析中常见的10种数据编码方式_第9张图片

7 - 使用map

额外强调的是,新增一列,一定要能够想到map

df7 = df.copy()
Map = {elem:index for index,elem in enumerate(set(df["Course Name"]))}
df7['Course Name_Label'] = df7['Course Name'].map(Map)
df7

数据分析中常见的10种数据编码方式_第10张图片

8 - 使用astype

这个方法应该很多人不知道,这就属于上面提到的知乎问题,能实现的方法太多了

df8 = df.copy()
value = df8['Course Name'].astype('category')
df8['Course Name_Label'] = value.cat.codes
df8

数据分析中常见的10种数据编码方式_第11张图片

9 - 使用 sklearn

同数值型一样,这种机器学习中的经典操作,sklearn一定有办法,使用LabelEncoder可以对分类数据进行编码

from sklearn.preprocessing import LabelEncoder
df9 = df.copy()
le = LabelEncoder()
le.fit(df9['Sex'])
df9['Sex_Label'] = le.transform(df9['Sex'])
le.fit(df9['Course Name'])
df9['Course Name_Label'] = le.transform(df9['Course Name'])
df9

数据分析中常见的10种数据编码方式_第12张图片

一次性转换两列也是可以的

from sklearn.preprocessing import LabelEncoder
df9 = df.copy()
le = OrdinalEncoder()
le.fit(df9[['Sex','Course Name']])
df9[['Sex_Label','Course Name_Label']] = le.transform(df9[['Sex','Course Name']])

df9

 数据分析中常见的10种数据编码方式_第13张图片

10 - 使用factorize

最后,再介绍一个小众但好用的pandas方法,我们需要注意到,在上面的方法中,自动生成的Course Name_Label列,虽然一个数据对应一个语言,因为避免写自定义函数或者字典,这样可以自动生成,所以大多是无序的。

如果我们希望它是有序的,也就是 Python 对应 0Java对应1,除了自己指定,还有什么优雅的办法?这时可以使用factorize,它会根据出现顺序进行编码

df10 = df.copy()
df10['Course Name_Label'] = pd.factorize(df10['Course Name'])[0]
df10

数据分析中常见的10种数据编码方式_第14张图片

 结合匿名函数,我们可以做到对多列进行有序编码转换

df10 = df.copy()
cat_columns = df10.select_dtypes(['object']).columns

df10[['Sex_Label', 'Course Name_Label']] = df10[cat_columns].apply(
    lambda x: pd.factorize(x)[0])
df10

数据分析中常见的10种数据编码方式_第15张图片

以上就是数据分析中常用的10种编码方式,不同完全记住所有方法与细节,只需知道有这么个函数能完成这样操作,需要用时能想到,想到再来查就行

你可能感兴趣的:(数据分析,大数据,数据分析,pandas,python)