1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existing values of type * `A`. * * @author Martin Odersky * @version 1.0, 16/07/2003 */ final case class Some[+A](x: A) extends Option[A] { def isEmpty = false def get = x }
Some(partitioner)表达什么含义?它是Some类型的对象,包装了partitioner对象。self是RDD的partitioner属性,它是Option类型.
Some(partitioner) == Some(partitioner)为true
Option(partitioner) == Some(partitioner)为false
/** * Generic function to combine the elements for each key using a custom set of aggregation * functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C * Note that V and C can be different -- for example, one might group an RDD of type * (Int, Int) into an RDD of type (Int, Seq[Int]). Users provide three functions: * * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list) * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list) * - `mergeCombiners`, to combine two C's into a single one. * * In addition, users can control the partitioning of the output RDD, and whether to perform * map-side aggregation (if a mapper can produce multiple items with the same key). */ def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true, serializer: Serializer = null): RDD[(K, C)] = { require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0 if (keyClass.isArray) { if (mapSideCombine) { //对于array keys,不能使用 map-side combining throw new SparkException("Cannot use map-side combining with array keys.") } if (partitioner.isInstanceOf[HashPartitioner]) {//对于array keys,不能使用默认的HashPartioner throw new SparkException("Default partitioner cannot partition array keys.") } } val aggregator = new Aggregator[K, V, C](createCombiner, mergeValue, mergeCombiners) if (self.partitioner == Some(partitioner)) { self.mapPartitions(iter => { val context = TaskContext.get() new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context)) }, preservesPartitioning = true) } else { new ShuffledRDD[K, V, C](self, partitioner) .setSerializer(serializer) .setAggregator(aggregator) .setMapSideCombine(mapSideCombine) } }
2. self变量
上面的代码中用了self变量,由于没看清楚,这个self不是想象中的关键字,而是PairRDDFunctions的构造属性(成为类属性),self是PairRDDFunctions隐式类对应的本尊类(RDD[(K,V)])对应的对象,这应该是Scala的命名规范吧
3. 继承
1. 如下ShuffledRDD继承自RDD,在类的继承中,ShuffleRDD可以接受构造参数,而且可以提供给父类的构造参数,比如prev.context,Nil,prev本是ShuffledRDD的构造参数,而后传递给了它的父类RDD
2. RDD[ _ <: Product2[K,V] ],其中的<:表示什么含义?
/** * :: DeveloperApi :: * The resulting RDD from a shuffle (e.g. repartitioning of data). * @param prev the parent RDD. * @param part the partitioner used to partition the RDD * @tparam K the key class. * @tparam V the value class. * @tparam C the combiner class. */ // TODO: Make this return RDD[Product2[K, C]] or have some way to configure mutable pairs @DeveloperApi class ShuffledRDD[K, V, C]( @transient var prev: RDD[_ <: Product2[K, V]], part: Partitioner) extends RDD[(K, C)](prev.context, Nil){ ..... }
4. Scala单例
object SparkHadoopUtil { private val hadoop = { val yarnMode = java.lang.Boolean.valueOf( System.getProperty("SPARK_YARN_MODE", System.getenv("SPARK_YARN_MODE"))) if (yarnMode) { try { Class.forName("org.apache.spark.deploy.yarn.YarnSparkHadoopUtil") .newInstance() .asInstanceOf[SparkHadoopUtil] } catch { case e: Exception => throw new SparkException("Unable to load YARN support", e) } } else { new SparkHadoopUtil } } def get: SparkHadoopUtil = { hadoop } }
5. 方法调用不写(),
在调用没有参数的方法时,可以不加().
val outputFormatInstance = hadoopConf.getOutputFormat val keyClass = hadoopConf.getOutputKeyClass //方法调用 val valueClass = hadoopConf.getOutputValueClass
6. until表达式
0 until rdd.partitions.size表达式返回的是一个集合,Seq[Int]。而for(i <= 0 until 10)表示的是0,9一共10次循环,即0 until 10先得到一个集合,使用for( i <= 集合)来遍历集合
/** * Run a job on all partitions in an RDD and return the results in an array. */ def runJob[T, U: ClassTag](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = { runJob(rdd, func, 0 until rdd.partitions.size, false) }
7.ClassTag的用法
下面这个方法定义中,可以分析的东西很多,首先,方法saveAsHadoopFile有两个参数,字符串类型的path以及ClassTag[F]类型的fm,所不同的是saveAsHadoopFile带有两个()()。
fm的类型是ClassTag[T],而fm.runtimeClass.asInstanceOf[Class[F]]的含义是什么?
def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassTag[F]) { saveAsHadoopFile(path, keyClass, valueClass, fm.runtimeClass.asInstanceOf[Class[F]]) }
8.(index, res) => results(index) = res表示什么含义?
将results(index)复制位res
/** * Run a function on a given set of partitions in an RDD and return the results as an array. The * allowLocal flag specifies whether the scheduler can run the computation on the driver rather * than shipping it out to the cluster, for short actions like first(). */ def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], allowLocal: Boolean ): Array[U] = { val results = new Array[U](partitions.size) runJob[T, U](rdd, func, partitions, allowLocal, (index, res) => results(index) = res) results }
上面runJob方法的定义是:
/** * Run a function on a given set of partitions in an RDD and pass the results to the given * handler function. This is the main entry point for all actions in Spark. The allowLocal * flag specifies whether the scheduler can run the computation on the driver rather than * shipping it out to the cluster, for short actions like first(). */ def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], allowLocal: Boolean, resultHandler: (Int, U) => Unit) { if (dagScheduler == null) { throw new SparkException("SparkContext has been shutdown") } val callSite = getCallSite val cleanedFunc = clean(func) logInfo("Starting job: " + callSite.shortForm) dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal, resultHandler, localProperties.get) progressBar.foreach(_.finishAll()) rdd.doCheckpoint() }
9.Any类型,
Scala中,Any表示任意类型,也就是它类似于Java的Object类型。
如下代码取自MapOutputTracker.scala
/** * Send a message to the trackerActor and get its result within a default timeout, or * throw a SparkException if this fails. */ protected def askTracker(message: Any): Any = { try { val future = trackerActor.ask(message)(timeout) Await.result(future, timeout) } catch { case e: Exception => logError("Error communicating with MapOutputTracker", e) throw new SparkException("Error communicating with MapOutputTracker", e) } }