RocketMQ-01

1. MQ介绍

##1.1 为什么要用MQ

消息队列是一种“先进先出”的数据结构

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HdlART1t-1681918882436)(img/queue1.png)]

其应用场景主要包含以下3个方面

1)应用解耦

系统的耦合性越高,容错性就越低。以电商应用为例,用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障或者因为升级等原因暂时不可用,都会造成下单操作异常,影响用户使用体验。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZJVEEOhR-1681918882439)(img/解耦1.png)]

使用消息队列解耦合,系统的耦合性就会提高了。比如物流系统发生故障,需要几分钟才能来修复,在这段时间内,物流系统要处理的数据被缓存到消息队列中,用户的下单操作正常完成。当物流系统回复后,补偿处理存在消息队列中的订单消息即可,终端系统感知不到物流系统发生过几分钟故障。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HLTJAHod-1681918882441)(img/解耦2.png)]

2)流量削峰

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qrMJDSPr-1681918882443)(img/mq-5.png)]

应用系统如果遇到系统请求流量的瞬间猛增,有可能会将系统压垮。有了消息队列可以将大量请求缓存起来,分散到很长一段时间处理,这样可以大大提到系统的稳定性和用户体验。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2LzWBkwB-1681918882444)(img/mq-6.png)]

一般情况,为了保证系统的稳定性,如果系统负载超过阈值,就会阻止用户请求,这会影响用户体验,而如果使用消息队列将请求缓存起来,等待系统处理完毕后通知用户下单完毕,这样总不能下单体验要好。

处于经济考量目的:

业务系统正常时段的QPS如果是1000,流量最高峰是10000,为了应对流量高峰配置高性能的服务器显然不划算,这时可以使用消息队列对峰值流量削峰

3)数据分发

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Xtx2K7Kw-1681918882446)(img/mq-1.png)]

通过消息队列可以让数据在多个系统更加之间进行流通。数据的产生方不需要关心谁来使用数据,只需要将数据发送到消息队列,数据使用方直接在消息队列中直接获取数据即可

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-srBDOnAY-1681918882448)(img/mq-2.png)]

1.2 MQ的优点和缺点

优点:解耦、削峰、数据分发

缺点包含以下几点:

  • 系统可用性降低

    系统引入的外部依赖越多,系统稳定性越差。一旦MQ宕机,就会对业务造成影响。

    如何保证MQ的高可用?

  • 系统复杂度提高

    MQ的加入大大增加了系统的复杂度,以前系统间是同步的远程调用,现在是通过MQ进行异步调用。

    • 如何保证消息没有被重复消费?
    • 怎么处理消息丢失情况?
    • 那么保证消息传递的顺序性?
  • 一致性问题

    A系统处理完业务,通过MQ给B、C、D三个系统发消息数据,如果B系统、C系统处理成功,D系统处理失败。

    如何保证消息数据处理的一致性?

1.3 各种MQ产品的比较

常见的MQ产品包括Kafka、ActiveMQ、RabbitMQ、RocketMQ。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JDeSrkqX-1681918882450)(img/MQ比较.png)]

2. RocketMQ快速入门

2.1 各角色介绍

  • Producer:消息的发送者;举例:发信者
  • Consumer:消息接收者;举例:收信者
  • Broker:暂存和传输消息;举例:邮局
  • NameServer:管理Broker;举例:各个邮局的管理机构
  • Topic:区分消息的种类;一个发送者可以发送消息给一个或者多个Topic;一个消息的接收者可以订阅一个或者多个Topic消息
  • Message Queue:相当于是Topic的分区;用于并行发送和接收消息

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z04yP1ww-1681918882451)(assets/RocketMQ角色.jpg)]

RocketMQ是阿里巴巴2016年MQ中间件,使用Java语言开发,在阿里内部,RocketMQ承接了例如“双11”等高并发场景的消息流转,能够处理万亿级别的消息。

2.2 准备工作

2.2.1 下载RocketMQ

RocketMQ最新版本:4.5.1

下载地址

2.2.2 环境要求

  • Linux64位系统

  • JDK1.8(64位)

  • 源码安装需要安装Maven 3.2.x

2.3 安装RocketMQ

2.3.1 安装步骤

本教程以二进制包方式安装

  1. 解压安装包
  2. 进入安装目录

2.3.2 目录介绍

  • bin:启动脚本,包括shell脚本和CMD脚本
  • conf:实例配置文件 ,包括broker配置文件、logback配置文件等
  • lib:依赖jar包,包括Netty、commons-lang、FastJSON等

2.4 启动RocketMQ

  1. 启动NameServer
# 1.启动NameServer
nohup sh bin/mqnamesrv &
# 2.查看启动日志
tail -f ~/logs/rocketmqlogs/namesrv.log
  1. 启动Broker
# 1.启动Broker
nohup sh bin/mqbroker -n localhost:9876 &
# 2.查看启动日志
tail -f ~/logs/rocketmqlogs/broker.log 
  • 问题描述:

    RocketMQ默认的虚拟机内存较大,启动Broker如果因为内存不足失败,需要编辑如下两个配置文件,修改JVM内存大小

# 编辑runbroker.sh和runserver.sh修改默认JVM大小
vi runbroker.sh
vi runserver.sh
  • 参考设置:

JAVA_OPT="${JAVA_OPT} -server -Xms256m -Xmx256m -Xmn128m -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m"

2.5 测试RocketMQ

2.5.1 发送消息

# 1.设置环境变量
export NAMESRV_ADDR=localhost:9876
# 2.使用安装包的Demo发送消息
sh bin/tools.sh org.apache.rocketmq.example.quickstart.Producer

2.5.2 接收消息

# 1.设置环境变量
export NAMESRV_ADDR=localhost:9876
# 2.接收消息
sh bin/tools.sh org.apache.rocketmq.example.quickstart.Consumer

2.6 关闭RocketMQ

# 1.关闭NameServer
sh bin/mqshutdown namesrv
# 2.关闭Broker
sh bin/mqshutdown broker

3. 消息发送样例

  • 导入MQ客户端依赖
<dependency>
    <groupId>org.apache.rocketmqgroupId>
    <artifactId>rocketmq-clientartifactId>
    <version>4.4.0version>
dependency>
  • 消息发送者步骤分析
1.创建消息生产者producer,并制定生产者组名
2.指定Nameserver地址
3.启动producer
4.创建消息对象,指定主题Topic、Tag和消息体
5.发送消息
6.关闭生产者producer
  • 消息消费者步骤分析
1.创建消费者Consumer,制定消费者组名
2.指定Nameserver地址
3.订阅主题Topic和Tag
4.设置回调函数,处理消息
5.启动消费者consumer

3.1 基本样例

3.1.1 消息发送

1)发送同步消息

这种可靠性同步地发送方式使用的比较广泛,比如:重要的消息通知,短信通知。

public class SyncProducer {
	public static void main(String[] args) throws Exception {
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
    	producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
    	for (int i = 0; i < 100; i++) {
    	    // 创建消息,并指定Topic,Tag和消息体
    	    Message msg = new Message("TopicTest" /* Topic */,
        	"TagA" /* Tag */,
        	("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
        	);
        	// 发送消息到一个Broker
            SendResult sendResult = producer.send(msg);
            // 通过sendResult返回消息是否成功送达
            System.out.printf("%s%n", sendResult);
    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

2)发送异步消息

异步消息通常用在对响应时间敏感的业务场景,即发送端不能容忍长时间地等待Broker的响应。

public class AsyncProducer {
	public static void main(String[] args) throws Exception {
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
        producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
        producer.setRetryTimesWhenSendAsyncFailed(0);
    	for (int i = 0; i < 100; i++) {
                final int index = i;
            	// 创建消息,并指定Topic,Tag和消息体
                Message msg = new Message("TopicTest",
                    "TagA",
                    "OrderID188",
                    "Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));
                // SendCallback接收异步返回结果的回调
                producer.send(msg, new SendCallback() {
                    @Override
                    public void onSuccess(SendResult sendResult) {
                        System.out.printf("%-10d OK %s %n", index,
                            sendResult.getMsgId());
                    }
                    @Override
                    public void onException(Throwable e) {
      	              System.out.printf("%-10d Exception %s %n", index, e);
      	              e.printStackTrace();
                    }
            	});
    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

3)单向发送消息

这种方式主要用在不特别关心发送结果的场景,例如日志发送。

public class OnewayProducer {
	public static void main(String[] args) throws Exception{
    	// 实例化消息生产者Producer
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
    	// 设置NameServer的地址
        producer.setNamesrvAddr("localhost:9876");
    	// 启动Producer实例
        producer.start();
    	for (int i = 0; i < 100; i++) {
        	// 创建消息,并指定Topic,Tag和消息体
        	Message msg = new Message("TopicTest" /* Topic */,
                "TagA" /* Tag */,
                ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
        	);
        	// 发送单向消息,没有任何返回结果
        	producer.sendOneway(msg);

    	}
    	// 如果不再发送消息,关闭Producer实例。
    	producer.shutdown();
    }
}

3.1.2 消费消息

1)负载均衡模式

消费者采用负载均衡方式消费消息,多个消费者共同消费队列消息,每个消费者处理的消息不同

public static void main(String[] args) throws Exception {
    // 实例化消息生产者,指定组名
    DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1");
    // 指定Namesrv地址信息.
    consumer.setNamesrvAddr("localhost:9876");
    // 订阅Topic
    consumer.subscribe("Test", "*");
    //负载均衡模式消费
    consumer.setMessageModel(MessageModel.CLUSTERING);
    // 注册回调函数,处理消息
    consumer.registerMessageListener(new MessageListenerConcurrently() {
        @Override
        public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
                                                        ConsumeConcurrentlyContext context) {
            System.out.printf("%s Receive New Messages: %s %n", 
                              Thread.currentThread().getName(), msgs);
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
    });
    //启动消息者
    consumer.start();
    System.out.printf("Consumer Started.%n");
}

2)广播模式

消费者采用广播的方式消费消息,每个消费者消费的消息都是相同的

public static void main(String[] args) throws Exception {
    // 实例化消息生产者,指定组名
    DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1");
    // 指定Namesrv地址信息.
    consumer.setNamesrvAddr("localhost:9876");
    // 订阅Topic
    consumer.subscribe("Test", "*");
    //广播模式消费
    consumer.setMessageModel(MessageModel.BROADCASTING);
    // 注册回调函数,处理消息
    consumer.registerMessageListener(new MessageListenerConcurrently() {
        @Override
        public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
                                                        ConsumeConcurrentlyContext context) {
            System.out.printf("%s Receive New Messages: %s %n", 
                              Thread.currentThread().getName(), msgs);
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
    });
    //启动消息者
    consumer.start();
    System.out.printf("Consumer Started.%n");
}

3.2 顺序消息

消息有序指的是可以按照消息的发送顺序来消费(FIFO)。RocketMQ可以严格的保证消息有序,可以分为分区有序或者全局有序。

顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参与,则为分区有序,即相对每个queue,消息都是有序的。

下面用订单进行分区有序的示例。一个订单的顺序流程是:创建、付款、推送、完成。订单号相同的消息会被先后发送到同一个队列中,消费时,同一个OrderId获取到的肯定是同一个队列。

3.2.1 顺序消息生产

/**
* Producer,发送顺序消息
*/
public class Producer {

   public static void main(String[] args) throws Exception {
       DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");

       producer.setNamesrvAddr("127.0.0.1:9876");

       producer.start();

       String[] tags = new String[]{"TagA", "TagC", "TagD"};

       // 订单列表
       List<OrderStep> orderList = new Producer().buildOrders();

       Date date = new Date();
       SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
       String dateStr = sdf.format(date);
       for (int i = 0; i < 10; i++) {
           // 加个时间前缀
           String body = dateStr + " Hello RocketMQ " + orderList.get(i);
           Message msg = new Message("TopicTest", tags[i % tags.length], "KEY" + i, body.getBytes());

           SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
               @Override
               public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
                   Long id = (Long) arg;  //根据订单id选择发送queue
                   long index = id % mqs.size();
                   return mqs.get((int) index);
               }
           }, orderList.get(i).getOrderId());//订单id

           System.out.println(String.format("SendResult status:%s, queueId:%d, body:%s",
               sendResult.getSendStatus(),
               sendResult.getMessageQueue().getQueueId(),
               body));
       }

       producer.shutdown();
   }

   /**
    * 订单的步骤
    */
   private static class OrderStep {
       private long orderId;
       private String desc;

       public long getOrderId() {
           return orderId;
       }

       public void setOrderId(long orderId) {
           this.orderId = orderId;
       }

       public String getDesc() {
           return desc;
       }

       public void setDesc(String desc) {
           this.desc = desc;
       }

       @Override
       public String toString() {
           return "OrderStep{" +
               "orderId=" + orderId +
               ", desc='" + desc + '\'' +
               '}';
       }
   }

   /**
    * 生成模拟订单数据
    */
   private List<OrderStep> buildOrders() {
       List<OrderStep> orderList = new ArrayList<OrderStep>();

       OrderStep orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("创建");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("付款");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111065L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("推送");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103117235L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       orderDemo = new OrderStep();
       orderDemo.setOrderId(15103111039L);
       orderDemo.setDesc("完成");
       orderList.add(orderDemo);

       return orderList;
   }
}

3.2.2 顺序消费消息

/**
* 顺序消息消费,带事务方式(应用可控制Offset什么时候提交)
*/
public class ConsumerInOrder {

   public static void main(String[] args) throws Exception {
       DefaultMQPushConsumer consumer = new 
           DefaultMQPushConsumer("please_rename_unique_group_name_3");
       consumer.setNamesrvAddr("127.0.0.1:9876");
       /**
        * 设置Consumer第一次启动是从队列头部开始消费还是队列尾部开始消费
* 如果非第一次启动,那么按照上次消费的位置继续消费 */
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.subscribe("TopicTest", "TagA || TagC || TagD"); consumer.registerMessageListener(new MessageListenerOrderly() { Random random = new Random(); @Override public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) { context.setAutoCommit(true); for (MessageExt msg : msgs) { // 可以看到每个queue有唯一的consume线程来消费, 订单对每个queue(分区)有序 System.out.println("consumeThread=" + Thread.currentThread().getName() + "queueId=" + msg.getQueueId() + ", content:" + new String(msg.getBody())); } try { //模拟业务逻辑处理中... TimeUnit.SECONDS.sleep(random.nextInt(10)); } catch (Exception e) { e.printStackTrace(); } return ConsumeOrderlyStatus.SUCCESS; } }); consumer.start(); System.out.println("Consumer Started."); } }

3.3 延时消息

比如电商里,提交了一个订单就可以发送一个延时消息,1h后去检查这个订单的状态,如果还是未付款就取消订单释放库存。

3.3.1 启动消息消费者

public class ScheduledMessageConsumer {
   public static void main(String[] args) throws Exception {
      // 实例化消费者
      DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("ExampleConsumer");
      // 订阅Topics
      consumer.subscribe("TestTopic", "*");
      // 注册消息监听者
      consumer.registerMessageListener(new MessageListenerConcurrently() {
          @Override
          public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> messages, ConsumeConcurrentlyContext context) {
              for (MessageExt message : messages) {
                  // Print approximate delay time period
                  System.out.println("Receive message[msgId=" + message.getMsgId() + "] " + (System.currentTimeMillis() - message.getStoreTimestamp()) + "ms later");
              }
              return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
          }
      });
      // 启动消费者
      consumer.start();
  }
}

3.3.2 发送延时消息

public class ScheduledMessageProducer {
   public static void main(String[] args) throws Exception {
      // 实例化一个生产者来产生延时消息
      DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup");
      // 启动生产者
      producer.start();
      int totalMessagesToSend = 100;
      for (int i = 0; i < totalMessagesToSend; i++) {
          Message message = new Message("TestTopic", ("Hello scheduled message " + i).getBytes());
          // 设置延时等级3,这个消息将在10s之后发送(现在只支持固定的几个时间,详看delayTimeLevel)
          message.setDelayTimeLevel(3);
          // 发送消息
          producer.send(message);
      }
       // 关闭生产者
      producer.shutdown();
  }
}

###3.3.3 验证

您将会看到消息的消费比存储时间晚10秒

3.3.4 使用限制

// org/apache/rocketmq/store/config/MessageStoreConfig.java
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";

现在RocketMq并不支持任意时间的延时,需要设置几个固定的延时等级,从1s到2h分别对应着等级1到18

3.4 批量消息

批量发送消息能显著提高传递小消息的性能。限制是这些批量消息应该有相同的topic,相同的waitStoreMsgOK,而且不能是延时消息。此外,这一批消息的总大小不应超过4MB。

3.4.1 发送批量消息

如果您每次只发送不超过4MB的消息,则很容易使用批处理,样例如下:

String topic = "BatchTest";
List<Message> messages = new ArrayList<>();
messages.add(new Message(topic, "TagA", "OrderID001", "Hello world 0".getBytes()));
messages.add(new Message(topic, "TagA", "OrderID002", "Hello world 1".getBytes()));
messages.add(new Message(topic, "TagA", "OrderID003", "Hello world 2".getBytes()));
try {
   producer.send(messages);
} catch (Exception e) {
   e.printStackTrace();
   //处理error
}

如果消息的总长度可能大于4MB时,这时候最好把消息进行分割

public class ListSplitter implements Iterator<List<Message>> {
   private final int SIZE_LIMIT = 1024 * 1024 * 4;
   private final List<Message> messages;
   private int currIndex;
   public ListSplitter(List<Message> messages) {
           this.messages = messages;
   }
    @Override 
    public boolean hasNext() {
       return currIndex < messages.size();
   }
   	@Override 
    public List<Message> next() {
       int nextIndex = currIndex;
       int totalSize = 0;
       for (; nextIndex < messages.size(); nextIndex++) {
           Message message = messages.get(nextIndex);
           int tmpSize = message.getTopic().length() + message.getBody().length;
           Map<String, String> properties = message.getProperties();
           for (Map.Entry<String, String> entry : properties.entrySet()) {
               tmpSize += entry.getKey().length() + entry.getValue().length();
           }
           tmpSize = tmpSize + 20; // 增加日志的开销20字节
           if (tmpSize > SIZE_LIMIT) {
               //单个消息超过了最大的限制
               //忽略,否则会阻塞分裂的进程
               if (nextIndex - currIndex == 0) {
                  //假如下一个子列表没有元素,则添加这个子列表然后退出循环,否则只是退出循环
                  nextIndex++;
               }
               break;
           }
           if (tmpSize + totalSize > SIZE_LIMIT) {
               break;
           } else {
               totalSize += tmpSize;
           }

       }
       List<Message> subList = messages.subList(currIndex, nextIndex);
       currIndex = nextIndex;
       return subList;
   }
}
//把大的消息分裂成若干个小的消息
ListSplitter splitter = new ListSplitter(messages);
while (splitter.hasNext()) {
  try {
      List<Message>  listItem = splitter.next();
      producer.send(listItem);
  } catch (Exception e) {
      e.printStackTrace();
      //处理error
  }
}

3.5 过滤消息

在大多数情况下,TAG是一个简单而有用的设计,其可以来选择您想要的消息。例如:

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_EXAMPLE");
consumer.subscribe("TOPIC", "TAGA || TAGB || TAGC");

消费者将接收包含TAGA或TAGB或TAGC的消息。但是限制是一个消息只能有一个标签,这对于复杂的场景可能不起作用。在这种情况下,可以使用SQL表达式筛选消息。SQL特性可以通过发送消息时的属性来进行计算。在RocketMQ定义的语法下,可以实现一些简单的逻辑。下面是一个例子:

------------
| message  |
|----------|  a > 5 AND b = 'abc'
| a = 10   |  --------------------> Gotten
| b = 'abc'|
| c = true |
------------
------------
| message  |
|----------|   a > 5 AND b = 'abc'
| a = 1    |  --------------------> Missed
| b = 'abc'|
| c = true |
------------

3.5.1 SQL基本语法

RocketMQ只定义了一些基本语法来支持这个特性。你也可以很容易地扩展它。

  • 数值比较,比如:>,>=,<,<=,BETWEEN,=;
  • 字符比较,比如:=,<>,IN;
  • IS NULL 或者 IS NOT NULL;
  • 逻辑符号 AND,OR,NOT;

常量支持类型为:

  • 数值,比如:123,3.1415;
  • 字符,比如:‘abc’,必须用单引号包裹起来;
  • NULL,特殊的常量
  • 布尔值,TRUEFALSE

只有使用push模式的消费者才能用使用SQL92标准的sql语句,接口如下:

public void subscribe(finalString topic, final MessageSelector messageSelector)

注意:SQL过滤需要依赖服务器的功能支持,在broker配置文件中添加对应的功能项,并开启对应功能

enablePropertyFilter=true

启动服务器使启用对应配置文件

sh mqbroker -n localhost:9876 -c ../conf/broker.conf

3.5.2 消息生产者

发送消息时,你能通过putUserProperty来设置消息的属性

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.start();
Message msg = new Message("TopicTest",
   tag,
   ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)
);
// 设置一些属性
msg.putUserProperty("a", String.valueOf(i));
SendResult sendResult = producer.send(msg);

producer.shutdown();

3.5.3 消息消费者

用MessageSelector.bySql来使用sql筛选消息

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
// 只有订阅的消息有这个属性a, a >=0 and a <= 3
consumer.subscribe("TopicTest", MessageSelector.bySql("a between 0 and 3");
consumer.registerMessageListener(new MessageListenerConcurrently() {
   @Override
   public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
       return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
   }
});
consumer.start();

3.6 事务消息

###3.6.1 流程分析

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XsQiOxZm-1681918882453)(img/事务消息.png)]

上图说明了事务消息的大致方案,其中分为两个流程:正常事务消息的发送及提交、事务消息的补偿流程。

####1)事务消息发送及提交

(1) 发送消息(half消息)。

(2) 服务端响应消息写入结果。

(3) 根据发送结果执行本地事务(如果写入失败,此时half消息对业务不可见,本地逻辑不执行)。

(4) 根据本地事务状态执行Commit或者Rollback(Commit操作生成消息索引,消息对消费者可见)

2)事务补偿

(1) 对没有Commit/Rollback的事务消息(pending状态的消息),从服务端发起一次“回查”

(2) Producer收到回查消息,检查回查消息对应的本地事务的状态

(3) 根据本地事务状态,重新Commit或者Rollback

其中,补偿阶段用于解决消息Commit或者Rollback发生超时或者失败的情况。

3)事务消息状态

事务消息共有三种状态,提交状态、回滚状态、中间状态:

  • TransactionStatus.CommitTransaction: 提交事务,它允许消费者消费此消息。
  • TransactionStatus.RollbackTransaction: 回滚事务,它代表该消息将被删除,不允许被消费。
  • TransactionStatus.Unknown: 中间状态,它代表需要检查消息队列来确定状态。

###3.6.2 发送事务消息

1) 创建事务性生产者

使用 TransactionMQProducer类创建生产者,并指定唯一的 ProducerGroup,就可以设置自定义线程池来处理这些检查请求。执行本地事务后、需要根据执行结果对消息队列进行回复。回传的事务状态在请参考前一节。

public class Producer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        //创建事务监听器
        TransactionListener transactionListener = new TransactionListenerImpl();
        //创建消息生产者
        TransactionMQProducer producer = new TransactionMQProducer("group6");
        producer.setNamesrvAddr("192.168.25.135:9876;192.168.25.138:9876");
        //生产者这是监听器
        producer.setTransactionListener(transactionListener);
        //启动消息生产者
        producer.start();
        String[] tags = new String[]{"TagA", "TagB", "TagC"};
        for (int i = 0; i < 3; i++) {
            try {
                Message msg = new Message("TransactionTopic", tags[i % tags.length], "KEY" + i,
                        ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                SendResult sendResult = producer.sendMessageInTransaction(msg, null);
                System.out.printf("%s%n", sendResult);
                TimeUnit.SECONDS.sleep(1);
            } catch (MQClientException | UnsupportedEncodingException e) {
                e.printStackTrace();
            }
        }
        //producer.shutdown();
    }
}

2)实现事务的监听接口

当发送半消息成功时,我们使用 executeLocalTransaction 方法来执行本地事务。它返回前一节中提到的三个事务状态之一。checkLocalTranscation 方法用于检查本地事务状态,并回应消息队列的检查请求。它也是返回前一节中提到的三个事务状态之一。

public class TransactionListenerImpl implements TransactionListener {

    @Override
    public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
        System.out.println("执行本地事务");
        if (StringUtils.equals("TagA", msg.getTags())) {
            return LocalTransactionState.COMMIT_MESSAGE;
        } else if (StringUtils.equals("TagB", msg.getTags())) {
            return LocalTransactionState.ROLLBACK_MESSAGE;
        } else {
            return LocalTransactionState.UNKNOW;
        }

    }

    @Override
    public LocalTransactionState checkLocalTransaction(MessageExt msg) {
        System.out.println("MQ检查消息Tag【"+msg.getTags()+"】的本地事务执行结果");
        return LocalTransactionState.COMMIT_MESSAGE;
    }
}

3.6.3 使用限制

  1. 事务消息不支持延时消息和批量消息。

  2. 为了避免单个消息被检查太多次而导致半队列消息累积,我们默认将单个消息的检查次数限制为 15 次,但是用户可以通过 Broker 配置文件的 transactionCheckMax参数来修改此限制。如果已经检查某条消息超过 N 次的话( N = transactionCheckMax ) 则 Broker 将丢弃此消息,并在默认情况下同时打印错误日志。用户可以通过重写 AbstractTransactionCheckListener 类来修改这个行为。

  3. 事务消息将在 Broker 配置文件中的参数 transactionMsgTimeout 这样的特定时间长度之后被检查。当发送事务消息时,用户还可以通过设置用户属性 CHECK_IMMUNITY_TIME_IN_SECONDS 来改变这个限制,该参数优先于 transactionMsgTimeout 参数。

  4. 事务性消息可能不止一次被检查或消费。

  5. 提交给用户的目标主题消息可能会失败,目前这依日志的记录而定。它的高可用性通过 RocketMQ 本身的高可用性机制来保证,如果希望确保事务消息不丢失、并且事务完整性得到保证,建议使用同步的双重写入机制。
    rn LocalTransactionState.ROLLBACK_MESSAGE;
    } else {
    return LocalTransactionState.UNKNOW;
    }

    }

    @Override
    public LocalTransactionState checkLocalTransaction(MessageExt msg) {
    System.out.println(“MQ检查消息Tag【”+msg.getTags()+“】的本地事务执行结果”);
    return LocalTransactionState.COMMIT_MESSAGE;
    }
    }


### 3.6.3 使用限制

1. 事务消息不支持延时消息和批量消息。
2. 为了避免单个消息被检查太多次而导致半队列消息累积,我们默认将单个消息的检查次数限制为 15 次,但是用户可以通过 Broker 配置文件的 `transactionCheckMax`参数来修改此限制。如果已经检查某条消息超过 N 次的话( N = `transactionCheckMax` ) 则 Broker 将丢弃此消息,并在默认情况下同时打印错误日志。用户可以通过重写 `AbstractTransactionCheckListener` 类来修改这个行为。
3. 事务消息将在 Broker 配置文件中的参数 transactionMsgTimeout 这样的特定时间长度之后被检查。当发送事务消息时,用户还可以通过设置用户属性 CHECK_IMMUNITY_TIME_IN_SECONDS 来改变这个限制,该参数优先于 `transactionMsgTimeout` 参数。
4. 事务性消息可能不止一次被检查或消费。
5. 提交给用户的目标主题消息可能会失败,目前这依日志的记录而定。它的高可用性通过 RocketMQ 本身的高可用性机制来保证,如果希望确保事务消息不丢失、并且事务完整性得到保证,建议使用同步的双重写入机制。
6. 事务消息的生产者 ID 不能与其他类型消息的生产者 ID 共享。与其他类型的消息不同,事务消息允许反向查询、MQ服务器能通过它们的生产者 ID 查询到消费者。

你可能感兴趣的:(java-rocketmq,rocketmq,java)