目录
112. 路径总和 Path Sum
113. 路径总和 II Path Sum II
114. 二叉树展开为链表 Flatten Binary Tree to Linked-list
每日一练刷题专栏
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
二叉树专题(7)
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5 输出:false 解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0 输出:false 解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
[0, 5000]
内-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
代码:
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func hasPathSum(root *TreeNode, targetSum int) bool {
sum := func(arr []int) int {
res := 0
for i := 0; i < len(arr); i++ {
res += arr[i]
}
return res
}
for _, path := range binaryTreePaths(root) {
if sum(path) == targetSum {
return true
}
}
return false
}
func binaryTreePaths(root *TreeNode) [][]int {
res := [][]int{}
if root == nil {
return res
}
if root.Left == nil && root.Right == nil {
return [][]int{{root.Val}}
}
leftPaths := binaryTreePaths(root.Left)
rightPaths := binaryTreePaths(root.Right)
paths := make([][]int, 0)
for _, path := range leftPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
for _, path := range rightPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
return paths
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1}
root := buildTree(nums)
fmt.Println(hasPathSum(root, 22))
nums2 := []int{1, 2, 3}
root = buildTree(nums2)
fmt.Println(hasPathSum(root, 5))
nums3 := []int{}
root = buildTree(nums3)
fmt.Println(hasPathSum(root, 0))
}
输出:
true
false
false
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5 输出:[]
示例 3:
输入:root = [1,2], targetSum = 0 输出:[]
提示:
[0, 5000]
内-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
代码1:
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func pathSum(root *TreeNode, targetSum int) [][]int {
res := [][]int{}
sum := func(arr []int) int {
res := 0
for i := 0; i < len(arr); i++ {
res += arr[i]
}
return res
}
for _, path := range binaryTreePaths(root) {
if sum(path) == targetSum {
res = append(res, append([]int{}, path...))
}
}
return res
}
func binaryTreePaths(root *TreeNode) [][]int {
res := [][]int{}
if root == nil {
return res
}
if root.Left == nil && root.Right == nil {
return [][]int{{root.Val}}
}
leftPaths := binaryTreePaths(root.Left)
rightPaths := binaryTreePaths(root.Right)
paths := make([][]int, 0)
for _, path := range leftPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
for _, path := range rightPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
return paths
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1}
root := buildTree(nums)
fmt.Println(pathSum(root, 22))
nums2 := []int{1, 2, 3}
root = buildTree(nums2)
fmt.Println(pathSum(root, 5))
nums3 := []int{1, 2}
root = buildTree(nums3)
fmt.Println(pathSum(root, 0))
}
输出:
[[5 4 11 2] [5 8 4 5]]
[]
[]
以上两题都用到了遍历出所有路径的函数 func binaryTreePaths(root *TreeNode) [][]int
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func binaryTreePaths(root *TreeNode) [][]int {
res := [][]int{}
if root == nil {
return res
}
if root.Left == nil && root.Right == nil {
return [][]int{{root.Val}}
}
leftPaths := binaryTreePaths(root.Left)
rightPaths := binaryTreePaths(root.Right)
paths := make([][]int, 0)
for _, path := range leftPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
for _, path := range rightPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
return paths
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1}
root := buildTree(nums)
fmt.Println(binaryTreePaths(root))
}
输出:
[[5 4 11 7] [5 4 11 2] [5 8 13] [5 8 4 5] [5 8 4 1]]
方法2: 递归 DFS
package main
import "fmt"
const null = -1 << 31 // 用Math.MinInt32来表示空节点
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func pathSum(root *TreeNode, targetSum int) [][]int {
result := [][]int{}
if root == nil {
return result
}
path := []int{}
dfs(root, targetSum, path, &result)
return result
}
func dfs(node *TreeNode, targetSum int, path []int, res *[][]int) {
if node == nil {
return
}
path = append(path, node.Val)
if node.Left == nil && node.Right == nil && node.Val == targetSum {
temp := make([]int, len(path))
copy(temp, path)
*res = append(*res, temp)
return
}
dfs(node.Left, targetSum-node.Val, path, res)
dfs(node.Right, targetSum-node.Val, path, res)
path = path[:len(path)-1]
}
func main() {
nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1}
root := buildTree(nums)
fmt.Println(pathSum(root, 22))
nums2 := []int{1, 2, 3}
root = buildTree(nums2)
fmt.Println(pathSum(root, 5))
nums3 := []int{1, 2}
root = buildTree(nums3)
fmt.Println(pathSum(root, 0))
}
给你二叉树的根结点 root
,请你将它展开为一个单链表:
TreeNode
,其中 right
子指针指向链表中下一个结点,而左子指针始终为 null
。示例 1:
输入:root = [1,2,5,3,4,null,6] 输出:[1,null,2,null,3,null,4,null,5,null,6]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [0] 输出:[0]
提示:
[0, 2000]
内-100 <= Node.val <= 100
进阶:你可以使用原地算法(O(1)
额外空间)展开这棵树吗?
代码:
func flatten(root *TreeNode) {
list, cur := []int{}, &TreeNode{}
preorder(root, &list)
cur = root
for i := 1; i < len(list); i++ {
cur.Left = nil
cur.Right = &TreeNode{Val: list[i], Left: nil, Right: nil}
cur = cur.Right
}
return
}
func flatten1(root *TreeNode) {
if root == nil || (root.Left == nil && root.Right == nil) {
return
}
flatten(root.Left)
flatten(root.Right)
currRight := root.Right
root.Right = root.Left
root.Left = nil
for root.Right != nil {
root = root.Right
}
root.Right = currRight
}
✨ 持续,努力奋斗做强刷题搬运工!
点赞,你的认可是我坚持的动力!
收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
Golang每日一练 专栏 |
|
Python每日一练 专栏 |
|
C/C++每日一练 专栏 |
|
Java每日一练 专栏 |