ROS常用组件---静态坐标变换---动态坐标变换

TF坐标变换

用于传输某个坐标系内坐标点的信息

rosmsg info geometry_msgs/PointStamped 
std_msgs/Header header                    #头
  uint32 seq                                #|-- 序号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 所属坐标系的 id
geometry_msgs/Point point                #点坐标
  float64 x                                    #|-- x y z 坐标
  float64 y
  float64 z

ROS常用组件---静态坐标变换---动态坐标变换_第1张图片

坐标系相对关系:用于传输坐标系相关位置信息

rosmsg info geometry_msgs/TransformStamped 
std_msgs/Header header                     #头信息
  uint32 seq                                #|-- 序列号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 坐标 ID,被参考的坐标系
string child_frame_id                    #子坐标系的 id,另一个坐标系
geometry_msgs/Transform transform        #坐标信息
  geometry_msgs/Vector3 translation        #偏移量
    float64 x                                #|-- X 方向的偏移量
    float64 y                                #|-- Y 方向的偏移量
    float64 z                                #|-- Z 方向上的偏移量
  geometry_msgs/Quaternion rotation        #四元数, child_frame_id 相对frame_id 的偏航,俯仰,翻滚,角度上的变化 
    float64 x                                
    float64 y                                
    float64 z                                
    float64 w

静态坐标变换

创建依赖函数

roscpp rospy std_msgs tf2 tf2_geometry_msgs  tf2_ros  geometry_msgs

使用c++创建发布方

/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/${PROJECT_NAME}_node


// 1.包含头文件
#include "ros/ros.h"
#include "tf2_${PROJECT_NAME}_noderos/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"//

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();//获取当前时刻
    ts.header.frame_id = "base_link";//相对坐标系中被参考的那个
    //----设置子级坐标系
    ts.child_frame_id = "laser";//雷达的坐标系
    //----设置子级相对于父级的偏移量,三个偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;//创建4元素对象
    //向该对象设置欧拉角。这个对象可以将欧拉角转换成4元素
    qtn.setRPY(0,0,0);//有3个值,就是俯仰,翻滚,偏航值
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

使用:

rosmsg info geometry_msgs/TransformStamped 
  - 
    header: 
      seq: 100                  序列号
      stamp: 
        secs: 1681440325        时间戳
        nsecs: 631626405        时间戳
      frame_id: "base_link"     小车底盘
    child_frame_id: "laser"     雷达
    transform: 
      translation:          
        x: 0.2                 x,y,z偏移量
        y: 0.0
        z: 0.5
      rotation: 
        x: 0.0
        y: 0.0
        z: 0.0
        w: 1.0
---

订阅方

/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/


// 1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"//

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();//获取当前时刻
    ts.header.frame_id = "base_link";//相对坐标系中被参考的那个
    //----设置子级坐标系
    ts.child_frame_id = "laser";//雷达的坐标系
    //----设置子级相对于父级的偏移量,三个偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;//创建4元素对象
    //向该对象设置欧拉角。这个对象可以将欧拉角转换成4元素
    qtn.setRPY(0,0,0);//有3个值,就是俯仰,翻滚,偏航值
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

ROS常用组件---静态坐标变换---动态坐标变换_第2张图片

使用python版

安装tf

sudo  apt-get install ros-noetic-tf

发布方

#! /usr/bin/env python
"""  
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 静态坐标广播器
        4.创建并组织被广播的消息
        5.广播器发送消息
        6.spin
"""
# 1.导包
import rospy
import tf2_ros#发布者对象
import tf
from geometry_msgs.msg import TransformStamped#

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_tf_pub_p")
    # 3.创建 静态坐标广播器
    broadcaster = tf2_ros.StaticTransformBroadcaster()
    # 4.创建并组织被广播的消息
    tfs = TransformStamped()
    # --- 头信息
    tfs.header.frame_id = "world"#车辆底盘
    tfs.header.stamp = rospy.Time.now()
    tfs.header.seq = 101
    # --- 子坐标系
    tfs.child_frame_id = "radar"#雷达
    # --- 坐标系相对信息
    # ------ 偏移量
    tfs.transform.translation.x = 0.2
    tfs.transform.translation.y = 0.0
    tfs.transform.translation.z = 0.5
    # ------ 四元数
    qtn = tf.transformations.quaternion_from_euler(0,0,0)
    tfs.transform.rotation.x = qtn[0]
    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]


    # 5.广播器发送消息
    broadcaster.sendTransform(tfs)
    # 6.spin
    rospy.spin()

订阅方

#! /usr/bin/env python
"""  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,
    转换成父级坐标系中的坐标点

    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.创建一个 radar 坐标系中的坐标点
        5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
        6.spin

"""
# 1.导包
import rospy
import tf2_ros
# 不要使用 geometry_msgs,需要使用 tf2 内置的消息类型
from tf2_geometry_msgs import PointStamped#消息
# from geometry_msgs.msg import PointStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_sub_tf_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()#缓存对象
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():    
    # 4.创建一个 radar 坐标系中的坐标点
        point_source = PointStamped()
        point_source.header.frame_id = "radar"#雷达坐标系
        point_source.header.stamp = rospy.Time.now()
        point_source.point.x = 10
        point_source.point.y = 2
        point_source.point.z = 3

        try:
    #     5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
            point_target = buffer.transform(point_source,"world")
            rospy.loginfo("转换结果:x = %.2f, y = %.2f, z = %.2f",
                            point_target.point.x,
                            point_target.point.y,
                            point_target.point.z)
        except Exception as e:
            rospy.logerr("异常:%s",e)

    #     6.spin
        rate.sleep()

使用命令方式进行转换

rosrun tf2_ros static_transform_publisher 0.2 0 0.5 0 0 0 /baselink /laser

参数分析
rosrun tf2_ros static_transform_publisher
下面3个,比如摄像头对于底盘的偏移量
 0.2:x方向
 0 :y方向
 0.5:z方向
下面这3个是,偏航角,俯仰角,翻滚角
 0 0 0 
父集坐标名称:
/baselink 
子集坐标名称
/laser

查看节点

rostopic list

结果

/rosout
/rosout_agg
/tf_static

查看节点信息

rostopic  echo /tf_static 

结果

transforms: 
  - 
    header: 
      seq: 0
      stamp: 
        secs: 1681455248
        nsecs: 158705720
      frame_id: "/baselink"
    child_frame_id: "/laser"
    transform: 
      translation: 
        x: 0.2
        y: 0.0
        z: 0.5
      rotation: 
        x: 0.0
        y: 0.0
        z: 0.0
        w: 1.0
---

动态坐标变换

查看小乌龟的话题,消息,格式
查看话题

rostopic list

ROS常用组件---静态坐标变换---动态坐标变换_第3张图片查看消息

rostopic info /turtle1/pose 

ROS常用组件---静态坐标变换---动态坐标变换_第4张图片
查看消息的格式

rosmsg info turtlesim/Pose 

ROS常用组件---静态坐标变换---动态坐标变换_第5张图片创建功能包

创建项目功能包依赖于

 tf2 tf2_ros tf2_geometry_msgs roscpp rospy std_msgs geometry_msgs turtlesim

发布方:demo01_dynamic_pub.cpp

/*  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "turtle1";
        point_laser.header.stamp = ros::Time();
        point_laser.point.x = 1;
        point_laser.point.y = 1;
        point_laser.point.z = 0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"world");
            ROS_INFO("坐标点相对于 world 的坐标为:(%.2f,%.2f,%.2f)",point_base.point.x,point_base.point.y,point_base.point.z);

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常:%s",e.what());
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}
该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 Pose 信息转换成 坐标系相对信息并发布

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 ROS 句柄
        4.创建订阅对象
        5.回调函数处理订阅到的数据(实现TF广播)
            5-1.创建 TF 广播器
            5-2.创建 广播的数据(通过 pose 设置)
            5-3.广播器发布数据
        6.spin
*/
// 1.包含头文件
#include "ros/ros.h"
#include "turtlesim/Pose.h"
#include "tf2_ros/transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"//
#include "tf2/LinearMath/Quaternion.h"//转换四元数的头文件

void doPose(const turtlesim::Pose::ConstPtr& pose){
    //  5-1.创建 TF 广播器
    static tf2_ros::TransformBroadcaster broadcaster;//创建静态的发布者对象,可重复利用
    //  5-2.创建 广播的数据(通过 pose 设置)
    geometry_msgs::TransformStamped tfs;//创建数据对象
    //  |----头设置
    tfs.header.frame_id = "world";
    tfs.header.stamp = ros::Time::now();//获取当前时刻

    //  |----坐标系 ID
    tfs.child_frame_id = "turtle1";

    //  |----坐标系相对信息设置
    tfs.transform.translation.x = pose->x;//从pose中获取
    tfs.transform.translation.y = pose->y;
    tfs.transform.translation.z = 0.0; // 二维实现,pose 中没有z,z 是 0
    //  |--------- 四元数设置

    tf2::Quaternion qtn;
    qtn.setdemo01_dynamic_pub.cpp
RPY(0,0,pose->theta);//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "turtle1";
        point_laser.header.stamp = ros::Time();
        point_laser.point.x = 1;
        point_laser.point.y = 1;
        point_laser.point.z = 0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"world");
            ROS_INFO("坐标点相对于 world 的坐标为:(%.2f,%.2f,%.2f)",point_base.point.x,point_base.point.y,point_base.point.z);

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常:%s",e.what());
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

    tfs.transform.rotation.x = qtn.getX();
    tfs.transform.rotation.y = qtn.getY();
    tfs.transform.rotation.z = qtn.getZ();
    tfs.transform.rotation.w = qtn.getW();


    //  5-3.广播器发布数据
    broadcaster.sendTransform(tfs);
}

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(ademo01_dynamic_pub.cpp
rgc,argv,"dynamic_tf_pub");
    // 3.创建 ROS 句柄
    ros::NodeHandle nh;
    // 4.创建订阅对象
    ros::Subscriber sub = nh.subscribe<turtlesim::Pose>("/turtle1/pose",1000,doPose);
    //     5.回调函数处理订阅到的数据(实现TF广播)
    //        
    // 6.spin
    ros::spin();
    return 0;
}

订阅方:demo02_dynamic_sub.cpp

//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "turtle1";
        point_laser.header.stamp = ros::Time();
        point_laser.point.x = 1;
        point_laser.point.y = 1;
        point_laser.point.z = 0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"world");
            ROS_INFO("坐标点相对于 world 的坐标为:(%.2f,%.2f,%.2f)",point_base.point.x,point_base.point.y,point_base.point.z);

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常:%s",e.what());
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

创建小乌龟

roscore
rosrun turtlesim turtlesim_node
rosrun turtlesim turtle_teleop_key

实现发布订阅

source ./devel/setup.bash
rosrun tf_doteiass demo01_dynamic_pub
rosrun tf_doteiass demo02_dynamic_sub

打开rviz进行查看

rviz

ROS常用组件---静态坐标变换---动态坐标变换_第6张图片

python实现

发布方 :demo01_dynamic_pub_p.py

#! /usr/bin/env python
"""  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.订阅 /turtle1/pose 话题消息
        4.回调函数处理
            4-1.创建 TF 广播器
            4-2.创建 广播python实现

demo01_dynamic_pub_p.py
的数据(通过 pose 设置)
            4-3.广播器发布数据
        5.spin
"""
# 1.导包
import rospy
import tf2_ros
import tf
from turtlesim.msg import Pose
from geometry_msgs.msg import TransformStamped

#     4.回调函数处理
def doPose(pose):
    #         4-1.创建 TF 广播器
    broadcaster = tf2_ros.TransformBroadcaster()
    #         4-2.创建 广播的数据(通过 pose 设置)
    tfs = TransformStamped()
    tfs.header.frame_id = "world"
    tfs.header.stamp = rospy.Time.now()
    tfs.child_frame_id = "turtle1"
    tfs.transform.translation.x = pose.x
    tfs.transform.translation.y = pose.y
    tfs.transform.translation.z = 0.0
    #转换成4元素
    qtn = tf.transformations.quaternion_from_euler(0,0,pose.theta)
    tfs.transform.rotation.x = qtn[0]## 订阅方

    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]
    #         4-3.广播器发布数据
    broadcaster.sendTransform(tfs)

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("dynamic_tf_pub_p")
    # 3.订阅 /turtle1/pose 话题消息
    sub = rospy.Subscriber("/turtle1/pose",Pose,doPose)
    #     4.回调函数处理
    #         4-1.创建 TF 广播器
    #         4-2.创建 广播的数据(通过 pose 设置)
    #         4-3.广播器发布数据
    #     5.spin
    rospy.spin()

订阅方:demo02_dynamic_sub_p.py

#! /usr/bin/env python
"""  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.处理订阅的数据


"""
# 1.导包
import rospy
import tf2_ros
# 不要使用 geometry_msgs,需要使用 tf2 内置的消息类型
from tf2_geometry_msgs import PointStamped
# from geometry_msgs.msg import PointStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_sub_tf_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():    
    # 4.创建一个 radar 坐标系中的坐标点
        point_source = PointStamped()
        point_source.header.frame_id = "turtle1"
        point_source.header.stamp = rospy.Time.now()
        point_source.point.x = 10
        point_source.point.y = 2
        point_source.point.z = 3

        try:
    #     5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
            point_target = buffer.transform(point_source,"world",rospy.Duration(1))
            rospy.loginfo("转换结果:x = %.2f, y = %.2f, z = %.2f",
                            point_target.point.x,
                            point_target.point.y,
                            point_target.point.z)
        except Exception as e:
            rospy.logerr("异常:%s",e)

    #     6.spin
        rate.sleep()

你可能感兴趣的:(linux,linux)