- Mysql:分库分表
爱吃汉堡的Saul.
数据库mysql数据库
引言:随着互联网业务的飞速发展,数据量与并发请求呈现爆炸式增长。传统的单机数据库架构,即使经过垂直扩展(如提升硬件配置、优化SQL、引入读写分离),也终将面临性能瓶颈。主要挑战体现在:单表性能极限:当单表数据行数达到千万乃至亿级时,B+树索引深度增加,导致查询效率显著下降。此外,DDL(数据定义语言)操作如添加索引、修改表结构等,可能耗时数小时并长时间锁定表,严重影响业务可用性。单库资源瓶颈:单个
- 分库分表之实战-sharding-JDBC水平分库+分表后:查询与删除操作实战
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC绑定表配置实战前情摘要:1
- 分库分表之实战-sharding-JDBC绑定表配置实战
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC水平分库+水平分表配置实战
- 告别重复订单!分布式ID生成核心方案全揭秘
山海上的风
分布式java
《告别重复订单!分布式ID生成核心方案全揭秘》你可能用过UUID,却饱受索引性能折磨;你尝试过数据库自增ID,却在分库分表时束手无策;你研究过雪花算法,却被时钟回拨问题困扰……分布式订单ID生成究竟有没有完美方案?本文将为你一一拆解,并给出企业级最优解!一、为什么订单ID如此关键?(示意图:分布式订单系统)需求维度技术指标灾难案例全局唯一零冲突概率重复订单导致财务对账崩溃高性能10万+TPS秒杀活
- 分库分表之实战-sharding-JDBC水平分库+水平分表配置实战
软件编程在线接单(需要可私)
分库分表后端java数据库mysql分布式
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC广播表前情摘要:1、数据库
- 分布式ID设计方案详解:从理论到实践
一、为什么需要分布式ID?在分布式系统中,唯一ID的生成面临两大核心挑战:全局唯一性:避免跨节点、跨数据中心的ID冲突。有序性:确保ID按时间或业务规则递增,提升数据库写入性能(如InnoDB的B+树索引)。传统单机自增ID(如MySQLAUTO_INCREMENT)无法满足分库分表、高并发等场景需求,因此需引入分布式ID方案。二、主流分布式ID方案对比方案优点缺点适用场景UUID简单、无中心化依
- MySQL分布式ID冲突详解:场景、原因与解决方案
码不停蹄的玄黓
mysql分布式数据库ID冲突
引言在分布式系统开发中,你是否遇到过这样的崩溃时刻?——明明每个数据库实例的自增ID都从1开始,插入数据时却提示“Duplicateentry‘100’forkey‘PRIMARY’”;或者分库分表后,不同库里的订单ID竟然重复,业务合并时直接报错……这些问题的核心,都是分布式ID冲突。今天咱们就来扒一扒MySQL分布式ID冲突的常见场景、底层原因,以及对应的解决方案,帮你彻底避开这些坑!一、为什
- ShardingSphere-JDBC 详解
csdn_tom_168
ApacheShardingSphere数据库ShardingSphereJDBC学习
ShardingSphere-JDBC(原Sharding-JDBC)是ApacheShardingSphere的核心模块之一,定位为轻量级Java框架,在Java的JDBC层提供分库分表、读写分离、数据加密、影子库等分布式数据库增强能力。它直接操作JDBC接口,对应用透明,集成成本极低。以下是ShardingSphere-JDBC的详解:一、核心功能数据分片:分库分表:将逻辑上的大表(库)拆分成
- 【架构设计(二)】高可用、高并发的 Java 架构设计
架构学院
Java成神之路-架构师进阶java架构开发语言
【架构设计(二)】高可用、高并发的Java架构设计在互联网业务爆发式增长的今天,高可用和高并发已成为Java系统架构设计的核心目标。本文将围绕负载均衡与高可用架构、缓存设计与优化、数据库读写分离与分库分表三大关键领域,深入剖析其原理,并结合完整的代码示例,帮助开发者构建稳定高效的系统架构。无套路、关注即可领。持续更新中关注公众号:搜【架构研究站】回复:资料领取,即可获取全部面试题以及1000+份学
- ShardingProxy-分库分表
菜逼の世界
ShardingSphereShardingSphereShardingProxy分表分库
ShardingProxy获取资源包下载地址ShardingProxy当前使用版本4.1.1安装apache-shardingsphere-4.1.1-sharding-proxy-bin.tar.gz解压即可目录说明bin:启动脚本start.bat:window启动脚本start.sh:linux启动脚本stop.sh:linux停止脚本conf:配置文件server
- MySQL的主从和分库分表
snow_7
MySQL
主从分离:多读少些的场景MySQL1)主从复制使用的是binlog异步的方式MySQL的主从复制是依赖于binlog的,也就是记录MySQL上的所有变化并以二进制形式保存在磁盘上二进制日志文件。主从复制就是将binlog中的数据从主库传输到从库上,一般这个过程是异步的,即主库上的操作不会等待binlog同步的完成。主从复制的过程是这样的:首先从库在连接到主节点时会创建一个IO线程,用以请求主库更新
- 如何设计一个高并发系统?从哪些方面考虑?
真IT布道者
架构性能优化分布式
核心观点:高并发系统设计需要从架构分层、资源扩展、性能优化、容错机制四个维度综合考量,通过分布式架构和异步化等手段实现系统弹性。一、架构分层设计1.分层解耦接入层:使用Nginx/LVS实现负载均衡,采用DNS轮询或Anycast进行流量分发服务层:微服务架构(如SpringCloud或Kubernetes),服务按功能垂直拆分数据层:读写分离(MySQL主从)+分库分表(ShardingSphe
- 分布式系统ID生成方案深度解析:雪花算法 vs UUID vs 其他主流方案
可曾去过倒悬山
算法后端
分布式系统ID生成方案深度解析:雪花算法vsUUIDvs其他主流方案在分布式系统中,如何高效生成全局唯一ID是一个关键挑战。本文将深入剖析雪花算法、UUID及多种主流ID生成方案,帮助开发者根据业务场景选择最佳方案。一、为什么需要分布式ID?在分布式系统中,传统数据库自增ID存在明显瓶颈:单点故障:依赖单数据库实例扩展困难:分库分表时ID冲突安全风险:连续ID暴露业务量性能瓶颈:高并发下成为系统瓶
- 【TIDB】了解,MySQL和TiDB的取舍,差异
{⌐■_■}
tidbmysql数据库
一句话总结:MySQL好用,但扩展性差;TiDB像MySQL,但能轻松应对大数据、高并发。为什么用TiDB而不是MySQL?场景MySQLTiDB数据量很大(几百GB~TB)容易卡顿、查询慢水平扩展,性能稳定业务快速增长、分库分表难维护需要人工做分库分表自动水平扩展,无需分库分表高并发写入(比如秒杀、交易)主从延迟、写入瓶颈多副本写入,强一致性,吞吐更高高可用要求需要额外搭建主从/集群内建高可用(
- 分库分表之-ShardingJDBC技术详解
ShardingJDBC技术详解一、ShardingJDBC简介ShardingJDBC是一款轻量级的分布式数据库中间件,定位为在Java的JDBC层提供额外服务。它以客户端直连数据库的方式,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。适用于任何基于JDBC的ORM框架,如JPA、Hibernate、Mybatis、SpringJDB
- OceanBase 的探索与实践
奔向理想的星辰大海
图解技术oceanbase
一、背景vivo作为一家以设计驱动创造伟大产品,以智能终端和智慧服务为核心的科技公司,服务全球5亿+用户,用户持续增长,同时数据量也持续增长,在数据库运维过程中遇到如下问题:分库分表:随着业务数据量的不断增长,MySQL实例数据量超过了单机容量限制,业务分库分表的需求越来越多,分库分表的改造成本和风险比较高,需要能够兼容MySQL的分布式数据库解决分库分表的问题。成本压力:业务用户基数比较大,每年
- Sharding-Sphere,Sharding-JDBC_介绍_Sharding-Sphere,Sharding-JDBC分布式_分库分表工作笔记001
添柴程序猿
技术交流QQ群【JAVA,C++,Python,.NET,BigData,AI】:170933152因为公司最近在做多租户的智慧城市相关的产品,这里,偶然看到这个框架,应该是可以用到,所以就看了一些,记录下来.先看一下我们要看的内容.去网站看看shardingsphere,是一套开源的分布式数据库中间件,解决方案包括3个产品点击了解更多去看一下
- 分库分表之数据库分片分类
软件编程在线接单(需要可私)
分库分表数据库sqlmysql
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之优缺点分析前情摘要:本文章目录(一)垂直分库分表优化方案一
- 分库分表之策略
软件编程在线接单(需要可私)
分库分表数据库后端springboot
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之数据库分片分类前情摘要:1、数据库性能优化2、分库分表之优
- Sharding-JDBC分库分表之SpringBoot分片策略
JingAi_jia917
Sharding-JDBCShardingJDBC分库分表Spring分库分表分库分表策略自定义分片策略ShardingJDBC
Sharding-JDBC系列1、Sharding-JDBC分库分表的基本使用2、Sharding-JDBC分库分表之SpringBoot分片策略3、Sharding-JDBC分库分表之SpringBoot主从配置前言前一篇以一个示例分享了Sharding-JDBC的基本使用。在进行分库分表时,可以设置分库分表的分片策略,在示例中,使用的是最简单的inline分片策略。本篇详细的给大家分享一下Sh
- 分库分表下的 ID 冲突问题与雪花算法讲解
软件编程在线接单(需要可私)
分库分表面试数据库mysql分布式
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表技术栈讲解-Sharding-JDBC前情摘要:1、数据库性
- ShardingJdbc分库分表+连表查询(超简单)
宇宙超级勇猛无敌暴龙战神
springboot
下载依赖这边建议所有的依赖版本都和我同步,因为我被版本冲突折磨了好久...org.springframework.bootspring-boot-starter-parent2.2.1.RELEASEorg.springframework.bootspring-boot-starter-weborg.springframework.bootspring-boot-starterorg.spring
- MySQL分库分表完全实战指南
目录什么是分库分表️基本概念生活化理解为什么需要分库分表性能瓶颈场景1.数据量爆炸式增长2.查询性能急剧下降3.并发压力过大✅分库分表带来的收益分库分表的类型垂直拆分(按业务功能划分)垂直分库实例垂直分表实例↔️水平拆分(按数据量划分)水平分库实例水平分表实例分库分表策略详解分片键选择原则1.查询频率分析2.数据分布均匀性分片算法详解1.取模算法(适用于均匀分布数据)2.范围算法(适用于有明显范围
- 高性能数据库设计:Java开发者的实战指南
hy9523
数据库java开发语言
关键词:#数据库性能优化#索引优化#分库分表#分布式架构#Java开发实践一、引言在Java开发的日常工作中,数据库性能优化是必不可少的一部分。大部分应用系统的性能瓶颈往往出现在数据库层面。如何设计一个高效的数据库,对于提升系统响应速度、降低运营成本、提升用户体验有着至关重要的作用。本文将结合Java开发者的实际场景,从索引优化、事务锁机制、分库分表到分布式架构等多个方面,深入探讨如何在Java项
- 分库分表查询实现方案详解
ldwtxwh
深度JAVA学习java
一、分库分表查询的挑战与解决方案1.1分库分表查询的核心挑战数据路由问题:如何确定数据在哪个库哪个表跨库查询问题:需要查询多个库/表时的数据合并分页排序问题:跨库分页和排序的复杂性事务一致性:跨库事务保证聚合计算:跨库的SUM、COUNT等聚合操作1.2分库分表查询方案对比方案实现方式优点缺点适用场景客户端分片应用层实现路由逻辑简单直接,无额外依赖业务耦合度高,维护成本高简单分片场景代理中间件My
- MySql读写分离部署(一主一从,双主双从,Mycat)
PH = 7
mysql数据库
参考资料:参考视频参考博客视频参考资料及安装包:https://pan.baidu.com/s/1xT_WokN_xlRv0h06b6F3yg提取码:aag3Mysql主从复制部署指南(一主一从)NotePad++编辑Linux服务器文档Mysql高版本(8.0及以后)Linux安装Mysql分库分表(基于Mycat)的基本部署MySQL垂直分库(基于MyCat)
- 09_03_ShardingJDBC分布式数据库中间件解决方案
广+土
09微服务技术核心java中间件
1.ShardingJDBC1.1分库分表方式回顾分库分表的目的就是将我们的单库的数据控制在合理范围内,从而提高数据库的性能.垂直拆分(按照结构分)垂直分表:将一张宽表(字段很多的表),按照字段的访问频次进行拆分,就是按照表单结构进行拆垂直分库:根据不同的业务,将表进行分类,拆分到不同的数据库.这些库可以部署在不同的服务器,分摊访问压力.水平拆分(按照数据行分)水平分库:将一张表的数据(按照数据行
- 6.分布式数据库与分库分表
nu11cat
数据库架构分布式
目录一、分库分表核心概念•核心目标:突破单库性能瓶颈,应对海量数据与高并发•垂直拆分:按业务模块拆分(用户库、订单库、商品库)•水平拆分:单表数据分片(用户ID取模、时间范围分片)二、分片策略与避坑指南•分片键选择:高基数字段(用户ID)、业务关联性、数据均衡性•分片算法:哈希取模(均匀分布)、一致性哈希(扩容友好)、范围分片(冷热分离)•避坑要点:禁止无分片键查询、避免后期改分片键、分片数预留扩
- java面试总结-20250610
川夜施密特
java面试开发语言
rediszset查询和插入的时间复杂度?限流的手段有哪些?什么情况会考虑分库分表,如何设计?如何预防和避免死锁发生?cpu的资源达到100%,如何排查?kafka架构设计原理?算法题数组的最大子数组和redis数据类型低层实现和应用场景?rpc框架组成部分?算法题数组旋转java8hashmap底层结构?链表和红黑树的时间复杂度?负载因子的作用?多线程为什么不直接使用runnable中的run而
- 数据库面试必备:如何主导分库分表项目实施流程详解
二进制11
#MySQL面试题数据库面试后端MySQL
MySQL面试题-如果组长要求你主导项目中的分库分表,大致的实施流程是?回答重点1、先分析业务需求:确定数据量及增长趋势,评估分库分表的必要性。(需要一定的预判但是不要过度设计)2、设计分库分表方案:选择适合的分库和分表策略(水平、垂直、哈希、范围等),并规划分库分表的结构。3、实现数据路由:根据分库分表策略设计数据路由机制,一般通过应用层代码或数据库中间件来实现,将请求路由到相应的数据库或表。4
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_