简单控制知识了解(pid+简单滑模)

文章目录

  • 一、PID控制
  • 二、PID控制算法实现
    • 1.位置式PID
    • 2.增量式PID
  • 二、简单的滑模控制
    • 1.系统描述
    • 1.滑模控制律设计
    • 1.程序设计


一、PID控制

PID(proportion integration differentiation)其实就是指比例,积分,微分控制,指用误差信号控制被控量
简单控制知识了解(pid+简单滑模)_第1张图片
控制算法公式:
u ( t ) = k p ( e r r ( t ) + 1 T 1 ∫ 0 1 e r r ( t )   d x + T D d e r r ( t ) d t ) u(t)=k_p(err(t)+\frac{1}{T_1}\int_0^1 {err(t)} \,{\rm d}x+\frac{T_D derr(t)}{dt}) u(t)=kp(err(t)+T1101err(t)dx+dtTDderr(t))
离散形式:
u ( k ) = k p ( e ( k ) + T T 1 ∑ n = 0 k e ( k ) + T D T ( e ( k ) − e ( k − 1 ) ) u(k)=k_p(e(k)+\frac{T}{T_1} \sum_{n=0}^k e(k)+\frac{T_D}{T}(e(k)-e(k-1)) u(k)=kp(e(k)+T1Tn=0ke(k)+TTD(e(k)e(k1))
输入:例如电机转速的预定值
输出:电机的转速的实际值
误差:输入-输出
比例项:误差乘比例系数,叠加到输入中,从而控制系统的输出,存在稳态误差(例:小车在接近终点时,误差较小,输入较小,不足以抵抗外界(例如摩擦力)影响,小车在接近终点时静止了,即稳态误差)
积分项:对误差积分(累加),增大输入,以消除稳态误差
微分项:负数项(误差必然越来越小),当误差极具减小,输入应当放缓。能够减小震荡。

二、PID控制算法实现

1.位置式PID

控制算法公式:
u ( k ) = k p e ( k ) + k i ∑ n = 0 k e ( k ) + k d ( e ( k ) − e ( k − 1 ) ) u(k)=k_pe(k)+k_i \sum_{n=0}^k e(k)+k_d(e(k)-e(k-1)) u(k)=kpe(k)+kin=0ke(k)+kd(e(k)e(k1))

#include
using namespace std;

class PID
{
public:
    PID();
    float SetSpeed;           //定义设定值
    float ActualSpeed;        //定义实际值
    float err;                //定义偏差值
    float err_last;           //定义上一个偏差值
    float Kp, Ki, Kd;         //定义比例、积分、微分系数
    float voltage;            //定义电压值(控制执行器的变量)
    float integral;           //定义积分值
};
PID::PID()//构造函数初始化
{
    SetSpeed=0.0;
    ActualSpeed=0.0;
    err=0.0;
    err_last=0.0;
    Kp = 0.2;
    Ki = 0.015; 
    Kd = 0.2;
    integral = 0.0;
}
float PID_realize(PID &pid, float speed) {
    pid.SetSpeed = speed;
    pid.err = pid.SetSpeed - pid.ActualSpeed;
    pid.integral += pid.err;
    pid.voltage = pid.Kp * pid.err + pid.Ki * pid.integral + pid.Kd * (pid.err - pid.err_last);
    pid.err_last = pid.err;
    pid.ActualSpeed = pid.voltage * 1.0;
    return pid.ActualSpeed;
}
int main() {
    printf("System begin \n");
    PID pid;
    int count = 0;
    while (count < 1000)
    {
        float speed = PID_realize(pid,200.0);
        printf("%f\n", speed);
        count++;
    }
    return 0;
}

2.增量式PID

控制算法公式:
△ u ( k ) = u ( k ) − u ( k − 1 ) △u(k)=u(k)-u(k-1) u(k)=u(k)u(k1)
△ u ( k ) = k p ( e ( k ) − e ( k − 1 ) ) + k i e ( k ) + k d ( e ( k ) − 2 e ( k − 1 ) + e ( k − 2 ) ) △u(k)=k_p(e(k)-e(k-1))+k_ie(k)+k_d(e(k)-2e(k-1)+e(k-2)) u(k)=kp(e(k)e(k1))+kie(k)+kd(e(k)2e(k1)+e(k2))
参数确定的情况下,只和最近三次的偏差有关,与位置式相比,增量式计算量小很多

#include
using namespace std;

class PID
{
public:
    PID();
    float SetSpeed;            //定义设定值
    float ActualSpeed;        //定义实际值
    float err;                //定义偏差值
    float err_next;            //定义上一个偏差值
    float err_last;            //定义最上前的偏差值
    float Kp, Ki, Kd;            //定义比例、积分、微分系数
};
PID::PID()//构造函数初始化
{
    SetSpeed=0.0;
    ActualSpeed=0.0;
    err=0.0;
    err_last=0.0;
    err_next = 0.0;
    Kp = 0.2;
    Ki = 0.015; 
    Kd = 0.2;

}
float PID_realize(PID &pid, float speed) 
{

    pid.SetSpeed = speed;
    pid.err = pid.SetSpeed - pid.ActualSpeed;
    float incrementSpeed=pid.Kp*(pid.err-pid.err_next)+pid.Ki*pid.err+pid.Kd*(pid.err-2*pid.err_next+pid.err_last);
    pid.err_last = pid.err_next;
    pid.err_next = pid.err;
    pid.ActualSpeed += incrementSpeed;
    return pid.ActualSpeed;

}
int main() {
    printf("System begin \n");
    PID pid;
    int count = 0;
    while (count < 1000)
    {
        float speed = PID_realize(pid,200.0);
        printf("%f\n", speed);
        count++;
    }
    return 0;
}

参考博客(优缺点总结)

二、简单的滑模控制

1.系统描述

负载通过电机控制输入u来控制,动态模型如下:
J θ ¨ = u + d ( t ) J \ddot{\theta}=u+d(t) Jθ¨=u+d(t)
其中 θ ( t ) \theta(t) θ(t)是角位置; J > 0 J>0 J>0为转动惯量; d ( t ) d(t) d(t)为干扰项且满足 ∣ d ( t ) ∣ ≤ η |d(t)| \leq \eta d(t)η; η \eta η为干扰上界。取位置指令为常数值 θ d ( t ) \theta_d(t) θd(t), e r r = θ − θ d err=\theta-\theta_d err=θθd为跟踪误差

1.滑模控制律设计

控制的目的是在 u ( t ) u(t) u(t)输出下,使得 e r r = 0 , e r r ˙ = 0 err=0,\dot{err}=0 err=0,err˙=0,定义跟踪误差函数s为
s = c e r r + e r r ˙ , c > 0 s=cerr+\dot{err},c>0 s=cerr+err˙,c>0
s = 0 s=0 s=0,解微分方程
c e r r + e r r ˙ = 0    ⟹    { e r r ˙ = − c e r r ˙ ( 0 ) e − c t , e r r = e r r ( 0 ) e − c t , cerr+\dot{err}=0\implies\begin{cases} \dot{err}=-c \dot{err}(0)e^{-ct}, \\ err= err(0)e^{-ct}, \end{cases} cerr+err˙=0{err˙=cerr˙(0)ect,err=err(0)ect,
状态量会以指数速度最终趋于0,s=0即滑模面。在方程 s = c e r r + e r r ˙ , c > 0 s=cerr+\dot{err},c>0 s=cerr+err˙,c>0中引入u,对其求导得(输入为阶跃响应的情况下)
s ˙ = c ( θ ˙ − θ d ˙ ) + θ ¨ − θ d ¨ = c θ ˙ + 1 J ( u + d ( t ) ) , c > 0 \dot{s}=c(\dot{\theta}-\dot{\theta_d})+\ddot{\theta}-\ddot{\theta_d}=c\dot{\theta}+\frac{1}{J}(u+d(t)),c>0 s˙=c(θ˙θd˙)+θ¨θd¨=cθ˙+J1(u+d(t)),c>0

对于关于s的状态方程,如何保证s=0(即s=0是平衡点,满足渐近稳定性),根据Lyapunov稳定判定的第二方法,如果存在一个连续函数V满足

( 1 ) (1) (1)    V ( 0 ) = 0 V(0)=0 V(0)=0
( 2 ) (2) (2)    V ( x ) > 0 V(x)>0 V(x)>0   x ! = 0 x!=0 x!=0
( 3 ) (3) (3)    V ˙ ( x ) < 0 \dot{V}(x)<0 V˙(x)<0   x ! = 0 x!=0 x!=0
那么系统将在平衡点 s = 0 s=0 s=0 稳定,即 lim ⁡ t → ∞ s ( t ) = 0 \lim_{t\to\infty}s(t)=0 limts(t)=0
V = 1 2 s 2 V=\frac{1}{2}s^2 V=21s2,明显满足(1)(2)条件,对于第三个条件
V ˙ ( x ) = s ˙ s \dot{V}(x)=\dot{s}s V˙(x)=s˙s
趋近律就是指的 s ˙ \dot{s} s˙(趋近律是为了使 s收敛到0,例如, s > 0 s>0 s>0时, s ˙ < 0 \dot s<0 s˙<0,那么 s s s就会收敛到0。滑模运动包括趋近运动和滑模运动两个过程。趋近运动为s→0的过程,滑模运动即 e r r → 0 , e r r ˙ → 0 err→0,\dot{err}→0 err0,err˙0的过程。趋近律一般有如下几种设计:
简单控制知识了解(pid+简单滑模)_第2张图片
对于 s ˙ = − ε s g n ( s ) − k s \dot{s}=-\varepsilon sgn(s)-ks s˙=εsgn(s)ks,令
u = J ( − c θ ˙ − 1 J ( η s g n ( s ) + k s ) ) u=J(-c\dot{\theta}-\frac{1}{J}(\eta sgn(s)+ks)) u=J(cθ˙J1(ηsgn(s)+ks))
带入
V ˙ = s ( c θ ˙ + 1 J ( u + d ( t ) ) ) \dot{V}=s(c\dot{\theta}+\frac{1}{J}(u+d(t))) V˙=s(cθ˙+J1(u+d(t)))

V ˙ = 1 J ( − k s 2 − η ∣ s ∣ + s d ( t ) ) ≤ − 1 J k s 2 \dot{V}= \frac{1}{J}(-ks^2-\eta|s|+sd(t))\leq -\frac{1}{J}ks^2 V˙=J1(ks2ηs+sd(t))J1ks2
满足条件(3),则即s=0是平衡点,满足渐近稳定性。

1.程序设计

控制器代码

function [sys,x0,str,ts] = simple_adaptive_controller(t, x, u, flag)
switch flag,
  case 0,
    [sys,x0,str,ts]=mdlInitializeSizes;  % 调用初始化子函数
  case 1,
    sys=[];
  case 2,
    sys=[];
  case 3,
    sys=mdlOutputs(t,x,u);    %计算输出子函数
  case 4,
    sys=[];   %计算下一仿真时刻子函数
  case 9,
    sys=[];    %终止仿真子函数
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
 
end
 
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes   %初始化子函数
 
sizes = simsizes;
 
sizes.NumContStates  = 0;  %连续状态变量个数
sizes.NumDiscStates  = 0;  %离散状态变量个数
sizes.NumOutputs     = 1;  %输出变量个数
sizes.NumInputs      = 3;   %输入变量个数
sizes.DirFeedthrough = 1;   %输入信号是否在输出端出现
sizes.NumSampleTimes = 0;   % at least one sample time is needed
 
sys = simsizes(sizes);
x0  = [];   %初始值
str = [];   
ts  = [];   %[0 0]用于连续系统,[-1 0]表示继承其前的采样时间设置
simStateCompliance = 'UnknownSimState';
 
function sys=mdlOutputs(t,x,u)   %计算输出子函数
 
J = 2;
thd = u(1);
th = u(2);
dth = u(3);
 
e = th - thd;
de = dth;
c = 10;
s = c*e + de;
xite = 1.1;
 
k = 0;
ut = J*(-c*dth-1/J*(k*s+xite*sign(s)));
sys(1) = ut;

受控对象代码(干扰为sint)

function [sys,x0,str,ts] = plant(t, x, u, flag)
switch flag,
  case 0,
    [sys,x0,str,ts]=mdlInitializeSizes;  % 调用初始化子函数
  case 1,
    sys=mdlDerivatives(t,x,u);   %调用计算微分子函数
  case 2,
    sys=[];
  case 3,
    sys=mdlOutputs(t,x,u);    %计算输出子函数
  case 4,
    sys=[];   %计算下一仿真时刻子函数
  case 9,
    sys=[];    %终止仿真子函数
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
 
end
 
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes   %初始化子函数
 
sizes = simsizes;
 
sizes.NumContStates  = 2;  %连续状态变量个数
sizes.NumDiscStates  = 0;  %离散状态变量个数
sizes.NumOutputs     = 2;  %输出变量个数
sizes.NumInputs      = 1;   %输入变量个数
sizes.DirFeedthrough = 0;   %输入信号是否在输出端出现
sizes.NumSampleTimes = 1;   % at least one sample time is needed
 
sys = simsizes(sizes);
x0  = [0, 0];   %初始值
str = [];   
ts  = [0 0];   %[0 0]用于连续系统,[-1 0]表示继承其前的采样时间设置
simStateCompliance = 'UnknownSimState';
 
function sys = mdlDerivatives(t, x, u)    %计算微分子函数,微分方程求解
J = 2;
dt = sin(t);
ut = u(1);
sys(1) = x(2);
sys(2) = 1/J*(ut+dt);
 
function sys=mdlOutputs(t,x,u)   %计算输出子函数
sys(1) = x(1);
sys(2) = x(2);

简单控制知识了解(pid+简单滑模)_第3张图片
简单控制知识了解(pid+简单滑模)_第4张图片
参考:
【控制理论】滑模控制最强解析
滑模控制程序及Simulink仿真
滑模控制自学笔记
Matlab S函数 function sys=mdlDerivatives(t,x,u)
【Matlab】简单的滑模控制程序及Simulink仿真
滑模变结构控制MATLAB仿真-基本理论与设计方法,刘金琨著

你可能感兴趣的:(嵌入式硬件)