A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
大脑空白下给的答案,二话不说TLE
public class Solution { public int uniquePaths(int m, int n) { if(m==0 || n==0) return 0; if(m==1 || n==1) return 1; return uniquePaths(m-1,n) + uniquePaths(m, n-1); } }
清晰的解法和思路参考
http://codeganker.blogspot.com/2014/03/unique-paths-leetcode.html
public class Solution { public int uniquePaths(int m, int n) { int x = Math.min(m,n); int y = Math.max(m,n); int[] res= new int[x]; res[0]=1; for(int i=0; i<y; i++){ for(int j=1; j<x;j++){ res[j] += res[j-1]; } } return res[x-1]; } }
soln 2 引用code ganker"其实就是机器人总共走m+n-2步,其中m-1步往下走,n-1步往右走,本质上就是一个组合问题,也就是从m+n-2个不同元素中每次取出m-1个元素的组合数。根据组合的计算公式,我们可以写代码来求解即可。"
public class Solution { public int uniquePaths(int m, int n) { int x = Math.min(m,n); int y = Math.max(m,n); double res=1; double d=1; for(int i=x+y-2; i>y-1; i--){ res *= i; d *= (i-y+1); // X!/(Y!*(X-Y)!) } return (int) (res/d); } }