题意:给出两个柱体,一个平行于z轴,设这个截面为A,在XOY面,一个平行于y轴,设这个截面为B,在XOZ面。求两个柱体的公共体积大小。
思路:我们用平行于YOZ的面去切这个公共 体积,因为所有数字为整数,我们可以在x方向每隔1切一次,这样就切成了一些长度为1的窄条,设[i-1,i]的这个窄条在i-1处在z方向的长度为 z[i-1],在y方向的长度为y[i-1],同理i处为z[i]和y[i]。z[i]其实就是B在x=i时上下两个z之差,y[i]就是A在x=i时两 个y之差。如下图:
我们令a=y[i]-y[i-1],b=y[i-1],c=z[i]-z[i-1],d=z[i-1],那么y对x在这个长度为1上的变化方程就是y=ax+b,同理z为z=cx+d,0<=x<=1,那么体积为:
int sgn(double x) { if(x>EPS) return 1; if(x<-EPS) return -1; return 0; } struct POINT { int x,y; POINT(){} POINT(int _x,int _y) { x=_x; y=_y; } void get() { RD(x,y); } }; struct point { double x,y; point(){} point(double _x,double _y) { x=_x; y=_y; } void get() { RD(x); RD(y); } point operator+(point a) { return point(x+a.x,y+a.y); } point operator-(point a) { return point(x-a.x,y-a.y); } double operator*(point a) { return x*a.y-y*a.x; } point operator*(double t) { return point(x*t,y*t); } double operator^(point a) { return x*a.x+y*a.y; } double len() { return sqrt(x*x+y*y); } point zhuanShun(double t) { return point(x*cos(t)+y*sin(t),y*cos(t)-x*sin(t)); } point zhuanNi(double t) { return point(x*cos(t)-y*sin(t),x*sin(t)+y*cos(t)); } point adjust(double L) { double d=len(); L/=d; return point(x*L,y*L); } void print() { printf("%.3lf %.3lf\n",x+EPS,y+EPS); } }; double len(point a) { return a.len(); } struct point3 { double x,y,z; point3(){} point3(double _x,double _y,double _z) { x=_x; y=_y; z=_z; } void get() { cin>>x>>y>>z; } point3 operator+(point3 a) { return point3(x+a.x,y+a.y,z+a.z); } point3 operator-(point3 a) { return point3(x-a.x,y-a.y,z-a.z); } point3 operator*(point3 a) { return point3(y*a.z-z*a.y,z*a.x-x*a.z,x*a.y-y*a.x); } point3 operator*(double t) { return point3(x*t,y*t,z*t); } double operator^(point3 a) { return x*a.x+y*a.y+z*a.z; } point3 operator/(double t) { return point3(x/t,y/t,z/t); } double len() { return sqrt(x*x+y*y+z*z); } point3 adjust(double L) { double t=len(); L/=t; return point3(x*L,y*L,z*L); } void print() { printf("%.10lf %.10lf %.10lf\n",x+EPS,y+EPS,z+EPS); } }; double len(point3 a) { return a.len(); } double getArea(point3 a,point3 b,point3 c) { double x=len((b-a)*(c-a)); return x/2; } double getVolume(point3 a,point3 b,point3 c,point3 d) { double x=(b-a)*(c-a)^(d-a); return x/6; } point3 pShadowOnPlane(point3 p,point3 a,point3 b,point3 c) { point3 v=(b-a)*(c-a); if(sgn(v^(a-p))<0) v=v*-1; v=v.adjust(1); double d=fabs(v^(a-p)); return p+v*d; } double lineToLine(point3 a,point3 b,point3 p,point3 q) { point3 v=(b-a)*(q-p); return fabs((a-p)^v)/len(v); } int pInPlane(point3 p,point3 a,point3 b,point3 c) { double S=getArea(a,b,c); double S1=getArea(a,b,p); double S2=getArea(a,c,p); double S3=getArea(b,c,p); return sgn(S-S1-S2-S3)==0; } int opposite(point3 p,point3 q,point3 a,point3 b,point3 c) { point3 v=(b-a)*(c-a); double x=v^(p-a); double y=v^(q-a); return sgn(x*y)<0; } int segCrossTri(point3 p,point3 q,point3 a,point3 b,point3 c) { return opposite(p,q,a,b,c)&& opposite(a,b,p,q,c)&& opposite(a,c,p,q,b)&& opposite(b,c,p,q,a); } double pToPlane(point3 p,point3 a,point3 b,point3 c) { double v=((b-a)*(c-a)^(p-a))/6; double s=len((b-a)*(c-a))/2; return fabs(3*v/s); } double pToLine(point3 p,point3 a,point3 b) { double S=len((a-p)*(b-p)); return S/len(a-b); } double pToSeg(point3 p,point3 a,point3 b) { if(sgn((p-a)^(b-a))<=0) return len(a-p); if(sgn((p-b)^(a-b))<=0) return len(b-p); return pToLine(p,a,b); } double pToPlane1(point3 p,point3 a,point3 b,point3 c) { point3 k=pShadowOnPlane(p,a,b,c); if(pInPlane(k,a,b,c)) return pToPlane(p,a,b,c); double x=pToSeg(p,a,b); double y=pToSeg(p,a,c); double z=pToSeg(p,b,c); return min(x,min(y,z)); } double getAng(point3 a,point3 b) { double x=(a^b)/len(a)/len(b); return acos(x); } double segToSeg(point3 a,point3 b,point3 p,point3 q) { point3 v=(b-a)*(q-p); double A,B,A1,B1; A=((b-a)*v)^(p-a); B=((b-a)*v)^(q-a); A1=((p-q)*v)^(a-q); B1=((p-q)*v)^(b-q); if(sgn(A*B)<=0&&sgn(A1*B1)<=0) { return lineToLine(a,b,p,q); } double x=min(pToSeg(a,p,q),pToSeg(b,p,q)); double y=min(pToSeg(p,a,b),pToSeg(q,a,b)); return min(x,y); } struct face { int a,b,c,ok; face(){} face(int _a,int _b,int _c,int _ok) { a=_a; b=_b; c=_c; ok=_ok; } }; struct _3DCH { face F[N<<2]; int b[N][N],cnt,n; point3 p[N]; int getDir(point3 t,face F) { double x=(p[F.b]-p[F.a])*(p[F.c]-p[F.a])^(t-p[F.a]); return sgn(x); } void deal(int i,int x,int y) { int f=b[x][y]; if(!F[f].ok) return; if(getDir(p[i],F[f])==1) DFS(i,f); else { b[y][x]=b[x][i]=b[i][y]=cnt; F[cnt++]=face(y,x,i,1); } } void DFS(int i,int j) { F[j].ok=0; deal(i,F[j].b,F[j].a); deal(i,F[j].c,F[j].b); deal(i,F[j].a,F[j].c); } void construct() { int i,j,k=0; for(i=1;i<n;i++) if(sgn(len(p[i]-p[0]))) { swap(p[i],p[1]); k++; break; } if(k!=1) return; for(i=2;i<n;i++) if(sgn(getArea(p[0],p[1],p[i]))) { swap(p[i],p[2]); k++; break; } if(k!=2) return; for(i=3;i<n;i++) if(sgn(getVolume(p[0],p[1],p[2],p[i]))) { swap(p[i],p[3]); k++; break; } if(k!=3) return; cnt=0; FOR0(i,4) { face k=face((i+1)%4,(i+2)%4,(i+3)%4,1); if(getDir(p[i],k)==1) swap(k.b,k.c); b[k.a][k.b]=b[k.b][k.c]=b[k.c][k.a]=cnt; F[cnt++]=k; } for(i=4;i<n;i++) FOR0(j,cnt) { if(F[j].ok&&getDir(p[i],F[j])==1) { DFS(i,j); break; } } j=0; FOR0(i,cnt) if(F[i].ok) F[j++]=F[i]; cnt=j; } point3 getCenter() { point3 ans=point3(0,0,0),o=point3(0,0,0); double s=0,temp; int i; FOR0(i,cnt) { face k=F[i]; temp=getVolume(o,p[k.a],p[k.b],p[k.c]); ans=ans+(o+p[k.a]+p[k.b]+p[k.c])/4*temp; s+=temp; } ans=ans/s; return ans; } double getMinDis(point3 a) { double ans=dinf; int i; FOR0(i,cnt) { face k=F[i]; ans=min(ans,pToPlane(a,p[k.a],p[k.b],p[k.c])); } return ans; } }; POINT a[N],b[N]; double YMin[N],YMax[N],ZMin[N],ZMax[N]; int n,m; void init(POINT a[],int n,double Min[],double Max[]) { a[n+1]=a[1]; int i,j; POINT p,q; double k,b; FOR1(i,n) { p=a[i]; q=a[i+1]; if(p.x>q.x) swap(p,q); Min[p.x]=min(Min[p.x],1.0*p.y); Max[p.x]=max(Max[p.x],1.0*p.y); if(p.x==q.x) continue; k=1.0*(p.y-q.y)/(p.x-q.x); b=p.y; for(j=p.x+1;j<=q.x;j++) { b+=k; Min[j]=min(Min[j],b); Max[j]=max(Max[j],b); } } } int main() { Rush(n) { RD(m); if(!n&&!m) break; int i; int xMin1=INF,xMax1=-INF,xMin2=INF,xMax2=-INF; FOR1(i,n) { a[i].get(); a[i].x+=100; xMin1=min(xMin1,a[i].x); xMax1=max(xMax1,a[i].x); } FOR1(i,m) { b[i].get(); b[i].x+=100; xMin2=min(xMin2,b[i].x); xMax2=max(xMax2,b[i].x); } FOR0(i,N) YMin[i]=ZMin[i]=dinf,YMax[i]=ZMax[i]=-dinf; init(a,n,YMin,YMax); init(b,m,ZMin,ZMax); double y[N],z[N]; int s=max(xMin1,xMin2); int e=min(xMax1,xMax2); for(i=s;i<=e;i++) { y[i]=YMax[i]-YMin[i]; z[i]=ZMax[i]-ZMin[i]; } double ans=0,A,B,C,D; for(i=s+1;i<=e;i++) { A=y[i]-y[i-1]; B=y[i-1]; C=z[i]-z[i-1]; D=z[i-1]; ans+=fabs(A*C/3+(A*D+B*C)/2+B*D); } PR(ans); } }