数据中台:OneData之One ID中用户体系ID-Mapping

        在OneData 体系中,OneID 指统一数据萃取,是一套解决数据孤岛问题的思想和方法。

数据孤岛是企业发展到一定阶段后普遍遇到的问题。各个部门、业务、产品,各自定义和存储其数据,使得这些数据间难以关联,变成孤岛一般的存在。

OneID的做法是通过统一的实体识别和连接,打破数据孤岛,实现数据通融。简单来说,用户、设备等业务实体,在对应的业务数据中,会被映射为唯一识别(UID)上,其各个维度的数据通过这个UID进行关联。

各个部门、业务、产品对业务实体的UID的定义和实现不一样,使得数据间无法直接关联,成为了数据孤岛。

基于手机号、身份证、邮箱、设备ID等信息,结合业务规则、机器学习、图算法等算法,进行 ID-Mapping,将各种 UID 都映射到统一ID上。通过这个统一ID,便可关联起各个数据孤岛的数据,实现数据通融,以确保业务分析、用户画像等数据应用的准确和全面。

一、ID Mapping 的背景

在推进用户画像和风险控制时,遇到的最大的问题是用户身份信息的混乱:

  • 相同设备,不同账号间切换
  • 相同用户,不同渠道下账号不相同,如微信小程序和APP
  • 同个用户,在不同的设备商登录

假如没有网络身份证,那么每个商家(App)只能基于自己的账号体系标识用户,并记录用户的行为。而有了统一的网络身份证之后,各个商家之间的数据就可以打通了,天猫不仅知道用户A在淘宝系的购物数据,也能了解到该用户在社交网络的行为,以及旅游的喜好,等等。

在现实的数

你可能感兴趣的:(数仓&数据中台,用户画像,big,data)