Machine Learning 机器学习笔记目录

目录

  • 前言

第一周:Welcome

  • 1.1 What is Machine Learning?
  • 1.2 Linear Regression with One Variable

第二周:Linear Regression with Multiple Variables

  • 2.1 Multivariate Linear Regression
  • 2.2 Computing Parameters Analytically
  • 2.3 Octave/Matlab Tutorial

第三周:Logistic Regression

  • 3.1 Logistic Regression
  • 3.2 Regularization

第四周:Neural Networks: Representation

  • 4.1 Neural Networks Representation

第五周:Neural Networks: Learning

  • 5.1 Neural Networks Learning
  • 5.2 Backpropagation in Practice

第六周:Advice for Applying Machine Learning

  • 6.1 Advice for Applying Machine Learning
  • 6.2 Machine Learning System Design

第七周:Support Vector Machines

  • 7.1 Support Vector Machines

第八周:Unsupervised Learning

  • 8.1 Unsupervised Learning
  • 8.2 Dimensionality Reduction

第九周:Anomaly Detection

  • 9.1 Anomaly Detection
  • 9.2 Recommender Systems

第十周:Large Scale Machine Learning

  • 10.1 Large Scale Machine Learning

第十一周:Application Example: Photo OCR

  • 11.1 Application Example: Photo OCR

GitHub Repo:Halfrost-Field

Follow: halfrost · GitHub

Source: https://github.com/halfrost/Halfrost-Field/blob/master/contents/Machine_Learning/contents.md

你可能感兴趣的:(Machine Learning 机器学习笔记目录)