在网络io、io多路复用select/poll/epoll、基于事件驱动的reactor中介绍了多种网络I/O方式,特别是事件驱动的reactor。其开发效率比直接使用IO多路复用要高,它一般是单线程的,设计目标是希望一个线程使用CPU的全部资源。
IO多路复用的主要功能是检测多条连接的IO是否就绪,但不具备具体IO操作的功能(比如读写数据)。常见的IO多路复用器有select、poll,epoll,他们是对IO的管理,检测接入的IO,触发IO事件;注意这三个都是同步IO。
reactor网络设计模型是把IO就绪检测的功能交由IO多路复用器实现,针对事件进行进行IO操作,不同的事件调用不同的回调函数。
以fd为索引,数据的存取和读取都针对对象zv_connect_t。例如每个block有1024个zv_connect_t,则当fd=1048时,对应的是第2个block中的第24个zv_connect_t。
typedef int (*ZVCALLBACK)(int fd, int events, void *arg);
typedef struct zv_connect_s
{
int fd;
ZVCALLBACK cb; //回调函数
char rbuffer[BUFFER_LEN]; //存储读取的数据
int rc; //rbuffer的长度
int count; //决定每次读多少字节
char wbuffer[BUFFER_LEN]; //存储待发送的数据
int wc; //wbuffer的长度
} zv_connect_t;
typedef struct zv_connblock_s{
zv_connect_t *block;
struct zv_connblock_s *next;
} zv_connblock_t;
typedef struct zv_reactor_s{
int epfd;
int blkcont;
zv_connblock_t *blockheader;
} zv_reactor_t;
//开辟reactor的内存空间
int zv_init_reactor(zv_reactor_t* reactor){
if (!reactor) return -1;
#if 0
// 分配两块不连续的空间
reactor->blockheader=malloc(sizeof(zv_connblock_t));
if (reactor->blockheader == NULL) return -1;
reactor->blockheader->block=calloc(1024,sizeof(zv_connect_t));
if (reactor->blockheader->block == NULL) return -1;
#elif 1
//分配两块连续的空间
reactor->blockheader=(zv_connblock_t *)malloc(sizeof(zv_connblock_t)+EVENTS_LEN*sizeof(zv_connect_t));
if (reactor->blockheader == NULL) return -1;
reactor->blockheader->block = (zv_connect_t *)(reactor->blockheader+1);
#endif
reactor->blkcont = 1;
reactor->blockheader->next =NULL;
reactor->epfd = epoll_create(1);
}
//释放
void zv_destory_reactor(zv_reactor_t* reactor){
if (!reactor) return ;
if (!reactor->blockheader) free(reactor->blockheader);
close(reactor->epfd);
}
int zv_connect_block(zv_reactor_t *reactor){
if (!reactor) return -1;
zv_connblock_t *blk = reactor->blockheader;
while (blk->next != NULL) blk = blk->next;
zv_connblock_t *connblock=(zv_connblock_t *)malloc(sizeof(zv_connblock_t)+EVENTS_LEN*sizeof(zv_connect_t));
if (connblock == NULL) return -1;
connblock->block = (zv_connect_t *)(connblock+1);
connblock->next =NULL;
blk->next = connblock;
reactor->blkcont ++;
return 0;
}
//返回第几个zv_connblock_t中的第几个zv_connect_t
zv_connect_t *zv_connect_idx(zv_reactor_t *reactor, int fd){
if (!reactor) return NULL;
int blockidx = fd/EVENTS_LEN;
while (blockidx >= reactor->blkcont){
//再开辟空间
zv_connect_block(reactor);
}
int i = 0;
zv_connblock_t *blk = reactor->blockheader;
while(i++ < blockidx){
blk = blk->next;
}
return &blk->block[fd % EVENTS_LEN];
}
通过socket创建套接字fd,并初始化相应的协议、端口、地址;通过bind绑定,listen监听。
int init_server(short port){
int sockfd=socket(AF_INET,SOCK_STREAM,0);
struct sockaddr_in servaddr;
memset(&servaddr,0,sizeof(struct sockaddr_in));
servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(port);
if (-1 == bind(sockfd,(struct sockaddr *)&servaddr,sizeof(struct sockaddr))){
printf("bind failed: %s",strerror(errno));
return -1;
}
listen(sockfd,10);
printf("listen port: %d\n",port);
return sockfd;
}
int set_listen(zv_reactor_t *reactor, int fd, ZVCALLBACK cb){
if (!reactor || !reactor->blockheader ) return -1;
reactor->blockheader->block[fd].fd = fd;
reactor->blockheader->block[fd].cb = cb;
struct epoll_event ev;
ev.events = EPOLLIN;
ev.data.fd = fd;
epoll_ctl(reactor->epfd,EPOLL_CTL_ADD,fd,&ev);
}
通过accept获得请求连接的客户端clientfd,通过reactor索引zv_connect_idx找到clientfd对应的内存地址,然后设置相应的事件信息,更改回调函数为recv;最后设置监听事件为EPOLLIN,添加到I/O多路复用器epoll中。
//建立连接
int accept_cb(int fd, int events, void *arg){
struct sockaddr_in clientaddr;
socklen_t len = sizeof(struct sockaddr);
int clientfd = accept(fd,(struct sockaddr *)&clientaddr,&len);
if (clientfd < 0) {
printf("accept errno: %d\n", errno);
return -1;
}
printf(" clientfd:%d\n",clientfd);
/*建立连接请求之后,把原来的listen fd 置为 clientfd ,回调事件由原来的accept_cb置为recv_cb
再调用epoll_ctl*/
zv_reactor_t *reactor = (zv_reactor_t *)arg;
zv_connect_t *conn = zv_connect_idx(reactor, clientfd);
conn->fd = clientfd;
conn->cb = recv_cb;
conn->count = BUFFER_LEN;
struct epoll_event ev;
ev.events=EPOLLIN;
ev.data.fd=clientfd;
epoll_ctl(reactor->epfd, EPOLL_CTL_ADD, clientfd ,&ev );
}
通过reactor索引zv_connect_idx找到clientfd对应的内存地址;通过recv接收数据存放到rbuffer;将rbuffer的数据拷贝到wbuffer,实现读写分离;更改回调函数为send;修改epoll的监听事件为EPOLLOUT
//接收数据
int recv_cb(int fd, int event, void *arg){
zv_reactor_t *reactor = (zv_reactor_t *)arg;
zv_connect_t *conn = zv_connect_idx(reactor, fd);
//conn->rbuffer+conn->rc 是一个指针运算,从当前 rbuffer 已经存储的位置开始继续读取数据
int ret = recv(fd,conn->rbuffer+conn->rc,conn->count,0);
if (ret < 0){
}
else if (ret == 0){
//释放空间,以供下个使用
conn ->fd = -1;
conn ->rc = 0;
conn ->wc = 0;
//移除
epoll_ctl(reactor->epfd,EPOLL_CTL_DEL,fd,NULL);
//关闭
close(fd);
return -1;
}
conn->rc += ret;
printf("rbuffer: %s, rc: %d\n", conn->rbuffer, conn->rc);
//为了将读写分开,把要发送到数据,存到wbuffer
memcpy(conn->wbuffer, conn->rbuffer, conn->rc);
conn->wc = conn->rc;
//置为写事件
conn->cb = send_cb;
struct epoll_event ev;
ev.events=EPOLLOUT;
ev.data.fd=fd;
epoll_ctl(reactor->epfd, EPOLL_CTL_MOD, fd ,&ev );
}
通过reactor索引zv_connect_idx找到clientfd对应的内存地址;通过send发送wbuffer中的数据;更改回调函数为recv;修改epoll的监听事件为EPOLLIN
//发送数据
int send_cb(int fd, int event, void *arg){
zv_reactor_t *reactor = (zv_reactor_t *)arg;
zv_connect_t *conn = zv_connect_idx(reactor, fd);
send(fd, conn->wbuffer, conn->wc, 0);
conn->cb = recv_cb;
struct epoll_event ev;
ev.events=EPOLLIN;
ev.data.fd=fd;
epoll_ctl(reactor->epfd, EPOLL_CTL_MOD, fd ,&ev );
}
创建MAX_PORT个监听fd,循环监听epoll,根据触发的事件选择相关回调函数。
//创建MAX_PORT个监听套接字
int i=0;
for (i=0;i<MAX_PORT;i++){
int sockfd = init_server(post+i);
set_listen(&reactor, sockfd, accept_cb);
}
struct epoll_event events[EVENTS_LEN] = {0};
while(1){
int nready = epoll_wait(reactor.epfd, events, EVENTS_LEN, -1);
if (nready < 0) continue;
int i = 0;
for (i = 0;i<nready;i++){
int connfd = events[i].data.fd;
zv_connect_t *conn = zv_connect_idx(&reactor, connfd);
if (events[i].events & EPOLLIN){ //读事件(连接请求、接收消息)
conn->cb(connfd, events[i].events, &reactor);
}
if (events[i].events & EPOLLOUT){ //写事件(发送消息)
conn->cb(connfd, events[i].events, &reactor);
}
}
}
代码