2.2 事件驱动的reactor网络设计模型

在网络io、io多路复用select/poll/epoll、基于事件驱动的reactor中介绍了多种网络I/O方式,特别是事件驱动的reactor。其开发效率比直接使用IO多路复用要高,它一般是单线程的,设计目标是希望一个线程使用CPU的全部资源。

IO多路复用的主要功能是检测多条连接的IO是否就绪,但不具备具体IO操作的功能(比如读写数据)。常见的IO多路复用器有select、poll,epoll,他们是对IO的管理,检测接入的IO,触发IO事件;注意这三个都是同步IO。

reactor网络设计模型是把IO就绪检测的功能交由IO多路复用器实现,针对事件进行进行IO操作,不同的事件调用不同的回调函数。

目录

  • 1、定义数据存储结构体
  • 2、初始化reactor
  • 3、实现reactor索引和扩大内存功能
  • 4、初始化socket,创建监听套接字
  • 5、实现reactor事件监听功能
  • 6、实现accept回调函数
  • 7、实现recv回调函数
  • 8、实现send回调函数
  • 9、reactor主循环(mainloop)
  • 9、实例


1、定义数据存储结构体

2.2 事件驱动的reactor网络设计模型_第1张图片
以fd为索引,数据的存取和读取都针对对象zv_connect_t。例如每个block有1024个zv_connect_t,则当fd=1048时,对应的是第2个block中的第24个zv_connect_t。

typedef int (*ZVCALLBACK)(int fd, int events, void *arg);

typedef struct zv_connect_s
{
	int fd;
	ZVCALLBACK cb;  //回调函数

	char rbuffer[BUFFER_LEN];  //存储读取的数据
	int rc; 	//rbuffer的长度
	int count; 	//决定每次读多少字节
	char wbuffer[BUFFER_LEN]; //存储待发送的数据
	int wc; 	//wbuffer的长度
} zv_connect_t;

typedef struct zv_connblock_s{
	zv_connect_t *block;
	struct zv_connblock_s *next;
} zv_connblock_t;

typedef struct zv_reactor_s{
	int epfd;
	int blkcont;

	zv_connblock_t *blockheader;
} zv_reactor_t;

2、初始化reactor

//开辟reactor的内存空间
int zv_init_reactor(zv_reactor_t* reactor){
	if (!reactor) return -1;
#if 0
	// 分配两块不连续的空间
	reactor->blockheader=malloc(sizeof(zv_connblock_t));
	if (reactor->blockheader == NULL) return -1;

	reactor->blockheader->block=calloc(1024,sizeof(zv_connect_t));
	if (reactor->blockheader->block == NULL) return -1;
#elif 1
	//分配两块连续的空间
	reactor->blockheader=(zv_connblock_t *)malloc(sizeof(zv_connblock_t)+EVENTS_LEN*sizeof(zv_connect_t));
	if (reactor->blockheader == NULL) return -1;

	reactor->blockheader->block = (zv_connect_t *)(reactor->blockheader+1);
#endif
	reactor->blkcont = 1;
	reactor->blockheader->next =NULL;
	
	reactor->epfd = epoll_create(1);
}

//释放
void zv_destory_reactor(zv_reactor_t* reactor){
	if (!reactor) return ;

	if (!reactor->blockheader) free(reactor->blockheader);

	close(reactor->epfd);
}

3、实现reactor索引和扩大内存功能

int zv_connect_block(zv_reactor_t *reactor){
	if (!reactor) return -1;

	zv_connblock_t *blk = reactor->blockheader;

	while (blk->next != NULL) blk = blk->next;

	zv_connblock_t *connblock=(zv_connblock_t *)malloc(sizeof(zv_connblock_t)+EVENTS_LEN*sizeof(zv_connect_t));
	if (connblock == NULL) return -1;

	connblock->block = (zv_connect_t *)(connblock+1);
	connblock->next =NULL;

	blk->next = connblock;
	reactor->blkcont ++; 

	return 0;

}

//返回第几个zv_connblock_t中的第几个zv_connect_t
zv_connect_t *zv_connect_idx(zv_reactor_t *reactor, int fd){
	if (!reactor) return NULL;

	int blockidx = fd/EVENTS_LEN;

	while (blockidx >= reactor->blkcont){
		//再开辟空间
		zv_connect_block(reactor);
	}

	int i = 0;
	zv_connblock_t *blk = reactor->blockheader;
	while(i++ < blockidx){
		blk = blk->next;
	}

	return &blk->block[fd % EVENTS_LEN];
}

4、初始化socket,创建监听套接字

通过socket创建套接字fd,并初始化相应的协议、端口、地址;通过bind绑定,listen监听。

int init_server(short port){
	int sockfd=socket(AF_INET,SOCK_STREAM,0);

	struct sockaddr_in servaddr;
	memset(&servaddr,0,sizeof(struct sockaddr_in));
	servaddr.sin_family=AF_INET;
	servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
	servaddr.sin_port=htons(port);

	if (-1 == bind(sockfd,(struct sockaddr *)&servaddr,sizeof(struct sockaddr))){
		printf("bind failed: %s",strerror(errno));
		return -1;
	}

	listen(sockfd,10);

	printf("listen port: %d\n",port);
	
	return sockfd;
}

5、实现reactor事件监听功能

int set_listen(zv_reactor_t *reactor, int fd, ZVCALLBACK cb){

	if (!reactor || !reactor->blockheader ) return -1;

	reactor->blockheader->block[fd].fd = fd;
	reactor->blockheader->block[fd].cb = cb;

	struct epoll_event ev;
	ev.events = EPOLLIN;
	ev.data.fd = fd;

	epoll_ctl(reactor->epfd,EPOLL_CTL_ADD,fd,&ev);
}

6、实现accept回调函数

通过accept获得请求连接的客户端clientfd,通过reactor索引zv_connect_idx找到clientfd对应的内存地址,然后设置相应的事件信息,更改回调函数为recv;最后设置监听事件为EPOLLIN,添加到I/O多路复用器epoll中。

//建立连接
int accept_cb(int fd, int events, void *arg){

	struct sockaddr_in clientaddr;
	socklen_t len = sizeof(struct sockaddr);
	
	int clientfd = accept(fd,(struct sockaddr *)&clientaddr,&len);
	if (clientfd < 0) {
		printf("accept errno: %d\n", errno);
		return -1;
	}

	printf(" clientfd:%d\n",clientfd);

	/*建立连接请求之后,把原来的listen fd 置为 clientfd ,回调事件由原来的accept_cb置为recv_cb
	  再调用epoll_ctl*/
	zv_reactor_t *reactor = (zv_reactor_t *)arg;
	zv_connect_t *conn = zv_connect_idx(reactor, clientfd);

	conn->fd = clientfd;
	conn->cb = recv_cb;
	conn->count = BUFFER_LEN;

	struct epoll_event ev;
	ev.events=EPOLLIN;
	ev.data.fd=clientfd;
	epoll_ctl(reactor->epfd, EPOLL_CTL_ADD, clientfd ,&ev );
}

7、实现recv回调函数

通过reactor索引zv_connect_idx找到clientfd对应的内存地址;通过recv接收数据存放到rbuffer;将rbuffer的数据拷贝到wbuffer,实现读写分离;更改回调函数为send;修改epoll的监听事件为EPOLLOUT

//接收数据
int recv_cb(int fd, int event, void *arg){

	zv_reactor_t *reactor = (zv_reactor_t *)arg;
	zv_connect_t *conn = zv_connect_idx(reactor, fd);

	//conn->rbuffer+conn->rc 是一个指针运算,从当前 rbuffer 已经存储的位置开始继续读取数据
	int ret = recv(fd,conn->rbuffer+conn->rc,conn->count,0);
	if (ret < 0){

	}
	else if (ret == 0){
		//释放空间,以供下个使用
		conn ->fd = -1;
		conn ->rc = 0;
		conn ->wc = 0;
		//移除
		epoll_ctl(reactor->epfd,EPOLL_CTL_DEL,fd,NULL);
		//关闭
		close(fd);

		return -1;
	}
	conn->rc += ret;
	printf("rbuffer:  %s, rc: %d\n", conn->rbuffer, conn->rc);

	//为了将读写分开,把要发送到数据,存到wbuffer
    memcpy(conn->wbuffer, conn->rbuffer, conn->rc);
    conn->wc = conn->rc;
    
	//置为写事件
    conn->cb = send_cb;

	struct epoll_event ev;
	ev.events=EPOLLOUT;
	ev.data.fd=fd;
	epoll_ctl(reactor->epfd, EPOLL_CTL_MOD, fd ,&ev );
}

8、实现send回调函数

通过reactor索引zv_connect_idx找到clientfd对应的内存地址;通过send发送wbuffer中的数据;更改回调函数为recv;修改epoll的监听事件为EPOLLIN


//发送数据
int send_cb(int fd, int event, void *arg){

	zv_reactor_t *reactor = (zv_reactor_t *)arg;
	zv_connect_t *conn = zv_connect_idx(reactor, fd);

    send(fd, conn->wbuffer, conn->wc, 0);

    conn->cb = recv_cb;


	struct epoll_event ev;
	ev.events=EPOLLIN;
	ev.data.fd=fd;
	epoll_ctl(reactor->epfd, EPOLL_CTL_MOD, fd ,&ev );
}

9、reactor主循环(mainloop)

创建MAX_PORT个监听fd,循环监听epoll,根据触发的事件选择相关回调函数。

//创建MAX_PORT个监听套接字
	int i=0;
	for (i=0;i<MAX_PORT;i++){
		int sockfd = init_server(post+i);
		set_listen(&reactor, sockfd, accept_cb);
	}

	struct epoll_event events[EVENTS_LEN] = {0};
	while(1){
		int nready = epoll_wait(reactor.epfd, events, EVENTS_LEN, -1);
		if (nready < 0) continue;

		int i = 0;
		for (i = 0;i<nready;i++){
			int connfd = events[i].data.fd;
			zv_connect_t *conn = zv_connect_idx(&reactor, connfd);

			if (events[i].events & EPOLLIN){ //读事件(连接请求、接收消息)
				conn->cb(connfd, events[i].events, &reactor);
			}
			if (events[i].events & EPOLLOUT){ //写事件(发送消息)
				conn->cb(connfd, events[i].events, &reactor);
			}
		}
	}

9、实例

代码

你可能感兴趣的:(Linux网络设计,网络,linux,网络设计,reactor)