构建您的语言模型应用程序可能需要在多种提示、模型甚至Chain(这是Langchain的概念)之间进行选择。在这个过程中,您需要以简单、灵活且直观的方式比较不同选项在不同输入上的表现。
LangChain提供了一个名为ModelLaboratory的概念,用于测试并尝试不同的模型。
实验环境是colab,但是还没有成功,模型加载问题,贴出来先看看
!pip install cohere
!pip install huggingface_hub
cohere 的api_key 和 huggingface_hub的access_token,是两个托管模型的地方
%env COHERE_API_KEY=FdHkBHjF3B7ynaCbCs0fxxx
%env HUGGINGFACEHUB_API_TOKEN=hf_MADVhnPvDxxxxTVuYjKbjAxxx
from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, PromptTemplate
from langchain.model_laboratory import ModelLaboratory
llms = [
OpenAI(temperature=0),
Cohere(model="command-xlarge-20221108", max_tokens=20, temperature=0),
HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":1})
]
model_lab = ModelLaboratory.from_llms(llms)
model_lab.compare("What color is a flamingo?")
输出
Input:
What color is a flamingo?
OpenAI
Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}
Flamingos are pink.
Cohere
Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}
Pink
HuggingFaceHub
Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}
pink
prompt = PromptTemplate(template="What is the capital of {state}?", input_variables=["state"])
model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt)
model_lab_with_prompt.compare("New York")
输出
Input:
New York
OpenAI
Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}
The capital of New York is Albany.
Cohere
Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}
The capital of New York is Albany.
HuggingFaceHub
Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}
st john s
prompt 比较
from langchain import SelfAskWithSearchChain, SerpAPIWrapper
open_ai_llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
self_ask_with_search_openai = SelfAskWithSearchChain(llm=open_ai_llm, search_chain=search, verbose=True)
cohere_llm = Cohere(temperature=0, model="command-xlarge-20221108")
search = SerpAPIWrapper()
self_ask_with_search_cohere = SelfAskWithSearchChain(llm=cohere_llm, search_chain=search, verbose=True)
chains = [self_ask_with_search_openai, self_ask_with_search_cohere]
names = [str(open_ai_llm), str(cohere_llm)]
model_lab = ModelLaboratory(chains, names=names)
model_lab.compare("What is the hometown of the reigning men's U.S. Open champion?")
输出
Input:
What is the hometown of the reigning men's U.S. Open champion?
OpenAI
Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}
> Entering new chain...
What is the hometown of the reigning men's U.S. Open champion?
Are follow up questions needed here: Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Carlos Alcaraz.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain.
So the final answer is: El Palmar, Spain
> Finished chain.
So the final answer is: El Palmar, Spain
Cohere
Params: {'model': 'command-xlarge-20221108', 'max_tokens': 256, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}
> Entering new chain...
What is the hometown of the reigning men's U.S. Open champion?
Are follow up questions needed here: Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Carlos Alcaraz.
So the final answer is:
Carlos Alcaraz
> Finished chain.
So the final answer is:
Carlos Alcaraz