VictoriaMetrics源码:tv写入流程

一. 整体流程

  • client写入时,会首先写入内存的shard,若shard写入成功,则直接返回client;
  • 若写入后shard已满,则将shard内的数据压缩后保存为inmemoryPart(仍然在内存中),然后返回client:
  • inmemoryPart的数据,被后台的goroutine,定期的merge为part结构,保存到disk中;

VictoriaMetrics源码:tv写入流程_第1张图片

时序数据在磁盘中的存储:

  • partition: 一个月1个目录,比如2023_05:
  • part: 作为partition下的子目录,里面包含tv和索引信息;
# ls 2023_05/
117_117_20230504085731.987_20230504085737.814_175ADBE68C628DDD

# # ls 2023_05/117_117_20230504085731.987_20230504085737.814_175ADBE68C628DDD/
index.bin  metaindex.bin  min_dedup_interval  timestamps.bin  values.bin

二. 内存shard

shards的个数:

  • shards个数跟CPU核数有关;
  • 对4C4G的机器来说,就1个shard;
// The number of shards for rawRow entries per partition.
//
var rawRowsShardsPerPartition = (cgroup.AvailableCPUs() + 3) / 4

每个shard保存的rows个数:

  • 范围=1w~50w;
  • unsafe.Sizeof(rawRow{})=50
  • 对4C4G机器来说:

    • memory.Allowed() = 4G×60%;
    • rowRowsShardsPerPartition=1;
    • 每个shard保存的rows个数:结果=(4G×60% / 1 / 256 / 50) = 18w;
// getMaxRawRowsPerShard returns the maximum number of rows that haven't been converted into parts yet.
func getMaxRawRowsPerShard() int {
    maxRawRowsPerPartitionOnce.Do(func() {
        n := memory.Allowed() / rawRowsShardsPerPartition / 256 / int(unsafe.Sizeof(rawRow{}))
        if n < 1e4 {
            n = 1e4
        }
        if n > 500e3 {
            n = 500e3
        }
        maxRawRowsPerPartition = n
    })
    return maxRawRowsPerPartition
}

若存在N个shards,写入时保存到哪个shard?

  • 按顺序轮转写:roundRobin

    • 第一次写第一个,下一次写第二个...
func (rrss *rawRowsShards) addRows(pt *partition, rows []rawRow) {
    n := atomic.AddUint32(&rrss.shardIdx, 1)
    shards := rrss.shards
    idx := n % uint32(len(shards))
    shard := &shards[idx]
    shard.addRows(pt, rows)
}

三. 写入的代码

首先,根据rows时间找目标partition,为简化分析,仅考虑一个partition写入的情况:

  • 一个partition就是一个month;
// lib/storage/table.go
func (tb *table) AddRows(rows []rawRow) error {
    if len(rows) == 0 {
        return nil
    }
    // Verify whether all the rows may be added to a single partition.
    ptwsX := getPartitionWrappers()
    defer putPartitionWrappers(ptwsX)

    ptwsX.a = tb.GetPartitions(ptwsX.a[:0])
    ptws := ptwsX.a
    for i, ptw := range ptws {
        singlePt := true
        for j := range rows {
            if !ptw.pt.HasTimestamp(rows[j].Timestamp) {
                singlePt = false
                break
            }
        }
        if !singlePt {
            continue
        }
        ...
        // 所有rows都在一个partition
        // Fast path - add all the rows into the ptw.
        ptw.pt.AddRows(rows)
        tb.PutPartitions(ptws)
        return nil
    }
    ...
}

确定partition后,后面的流程即在partion内写入:

  • rows会被先写入partition内的[]shard;
// lib/storage/partition.go
// AddRows adds the given rows to the partition pt.
func (pt *partition) AddRows(rows []rawRow) {
    if len(rows) == 0 {
        return
    }
    // Validate all the rows.
    ...
    // 写入到[]shard
    pt.rawRows.addRows(pt, rows)
}

shard内的写入:

  • 若shard内有足够的空位写入rows,则写入shard并返回client了;
  • 否则,将shard内已有的rows和新rows保存在rowsToFlush中;然后将rowsToFlush中的数据写入inmemoryPart;
// lib/storage/partition.go
func (rrs *rawRowsShard) addRows(pt *partition, rows []rawRow) {
    var rowsToFlush []rawRow

    rrs.mu.Lock()
    if cap(rrs.rows) == 0 {
        n := getMaxRawRowsPerShard()
        rrs.rows = make([]rawRow, 0, n)
    }
    maxRowsCount := cap(rrs.rows)
    capacity := maxRowsCount - len(rrs.rows)
    // 还有空位
    if capacity >= len(rows) {
        // Fast path - rows fit capacity.
        rrs.rows = append(rrs.rows, rows...)
    } else {
        // shard中没有空位了
        // 将shard中的rows和新rows保存在rowsToFlush中
        // Slow path - rows don't fit capacity.
        // Put rrs.rows and rows to rowsToFlush and convert it to a part.
        rowsToFlush = append(rowsToFlush, rrs.rows...)
       rowsToFlush = append(rowsToFlush, rows...)
        rrs.rows = rrs.rows[:0]
        rrs.lastFlushTime = fasttime.UnixTimestamp()
    }
    rrs.mu.Unlock()
    // 将rowsToFlush内的rows写入inmemoryPart
    pt.flushRowsToParts(rowsToFlush)
}

将rowsToFlush的数据写入inmemoryPart的过程:

  • 这里可以看到,若rowsToFlush为空的话,函数就直接返回了;
  • 具体工作由pt.addRowsPart(rowsPart)执行;
// lib/storage/partition.go
func (pt *partition) flushRowsToParts(rows []rawRow) {
    maxRows := getMaxRawRowsPerShard()
    wg := getWaitGroup()
    for len(rows) > 0 {
        n := maxRows
        if n > len(rows) {
            n = len(rows)
        }
        wg.Add(1)
        go func(rowsPart []rawRow) {
            defer wg.Done()
            pt.addRowsPart(rowsPart)    // 执行工作的函数
        }(rows[:n])
        rows = rows[n:]
    }
    wg.Wait()
    putWaitGroup(wg)
}

将rows内容写入inmemoryPart,然后构造一个partWrapper,将partWrapper保存到partition.smallParts中;

与此同时,判断pt.smallParts是否超过256个,若<=256则直接返回;否则帮助执行merge part;

// lib/storage/partition.go
func (pt *partition) addRowsPart(rows []rawRow) {
    // 将rows的内容写入inmemoryPart
    mp := getInmemoryPart()
    mp.InitFromRows(rows)    //将rows写入inmemoryPart时会对rows数据进行压缩
    ...
    // 构造一个partWrapper
    p, err := mp.NewPart()
    pw := &partWrapper{
        p:        p,
        mp:       mp,
        refCount: 1,
    }
    // 将新的partWrapper保存在partition的smallParts中
    pt.smallParts = append(pt.smallParts, pw)
    // 判定是否超过256
    ok := len(pt.smallParts) <= maxSmallPartsPerPartition
    pt.partsLock.Unlock()
    if ok {
        return    // smallParts <= 256,直接返回
    }
    // 若 smallParts > 256,则帮忙执行merge
    // The added part exceeds available limit. Help merging parts.
    ...
    err = pt.mergeSmallParts(false)
    if err == nil {
        atomic.AddUint64(&pt.smallAssistedMerges, 1)
        return
    }
    ....
}

四. 总结

  • 最快的流程:

    • rows写入到partition写的某个shard,然后返回;
    • shard内的rows被goroutine定期的保存到inmemoryPart;
  • 次快的流程:

    • rows写入的目标shard满了,将shard rows和新rows存入inmemoryPart,保存到partition.smallParts中;
    • inmemoryPart内的rows被goroutine定期的merge到磁盘,保存为part目录;
  • 最慢的流程:

    • 在上一个流程的基础上,发现pt.smallParts超过256个,帮助执行merge;

你可能感兴趣的:(时序数据库)