tar -zxvf kafka_2.11-2.2.2.tgz tar -C /opt/apps/
3.修改配置文件
(1)进入配置文件目录
[root@linux01 apps]# cd kafka_2.12-2.3.1/config
(2)编辑配置文件
vi server.properties
#为依次增长的:0、1、2、3、4,集群中唯一 id
broker.id=0
#数据存储的⽬录
log.dirs=/opt/data/kafkadata
#底层存储的数据(日志)留存时长(默认7天)
log.retention.hours=168
#底层存储的数据(日志)留存量(默认1G)
log.retention.bytes=1073741824
#指定zk集群地址
zookeeper.connect=linux01:2181,linux02:2181,linux03:2181
for i in {2..3}
do
scp -r kafka_2.11-2.2.2 linux0$i:$PWD
done
5.环境变量配置
vi /etc/profile
export KAFKA_HOME=/opt/apps/kafka_2.11-2.2.2
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile
# 注意:还需要分发环境变量
#!/bin/bash
case $1 in
"start"){
for i in linux01 linux02 linux03
do
echo ---------- kafka $i 启动 ------------
ssh $i "source /etc/profile; /opt/app/kafka2.4.1/bin/kafka-server-start.sh -daemon /opt/app/kafka2.4.1/config/server.properties"
done
};;
"stop"){
for i in linux01 linux02 linux03
do
echo ---------- kafka $i 停止 ------------
ssh $i "source /etc/profile; /opt/app/kafka2.4.1/bin/kafka-server-stop.sh "
done
};;
esac
分区对于 kafka 集群的好处是:实现topic数据的负载均衡。提高写入、读出的并发度,提高吞吐量。
物理存储目录结构 __consumer_offset
存储目录 名称规范: topic名称-分区号
index索引文件中的数据为: 消息offset -> log文件中该消息的物理偏移量位置;
Kafka 中的索引文件以稀疏索引( sparse index )的方式构造消息的索引,它并不保证每个消息在索引文件中都有对应的索引;每当写入一定量(由 broker 端参数 log.index.interval.bytes 指定,默认值为 4096 ,即 4KB )的消息时,偏移量索引文件和时间戳索引文件分别增加一个偏移量索引项和时间戳索引项,增大或减小 log.index.interval.bytes的值,对应地可以缩小或增加索引项的密度;
查询指定偏移量时,使用二分查找法来快速定位偏移量的位置。
在客户端编程代码中,消息的封装类有两种:ProducerRecord、ConsumerRecord;
简单来说,kafka中的每个massage由一对key-value构成;
Kafka中的message格式经历了3个版本的变化了:v0 、 v1 、 v2
日志分段文件切分包含以下4个条件,满足其一即可:
Controller作为Kafka集群中的核心组件,它的主要作用是在 Apache ZooKeeper 的帮助下管理和协调整个 Kafka 集群。
Controller与Zookeeper进行交互,获取与更新集群中的元数据信息。其他broker并不直接与zookeeper进行通信,而是与 Controller 进行通信并同步Controller中的元数据信息。
Kafka集群中每个节点都可以充当Controller节点,但集群中同时只能有一个Controller节点。
在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责维护整个集群中所有分区和副本的状态及分区leader的选举。
当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责分区的重新分配。
Kafka中的控制器选举的工作依赖于Zookeeper,成功竞选为控制器的broker会在Zookeeper中创建/controller这个临时(EPHEMERAL)节点,此临时节点的内容参考如下:
{“version”:1,“brokerid”:0,“timestamp”:“1529210278988”}
其中version在目前版本中固定为1,brokerid表示成为控制器的broker的id编号,timestamp表示竞选成为控制器时的时间戳。
在任意时刻,集群中有且仅有一个控制器。每个broker启动的时候会去尝试去读取zookeeper上的/controller节点的brokerid的值,如果读取到brokerid的值不为-1,则表示已经有其它broker节点成功竞选为控制器,所以当前broker就会放弃竞选;如果Zookeeper中不存在/controller这个节点,或者这个节点中的数据异常,那么就会尝试去创建/controller这个节点,当前broker去创建节点的时候,也有可能其他broker同时去尝试创建这个节点,只有创建成功的那个broker才会成为控制器,而创建失败的broker则表示竞选失败。每个broker都会在内存中保存当前控制器的brokerid值,这个值可以标识为activeControllerId。
对Zookeeper中的/admin/reassign_partitions节点注册PartitionReassignmentListener,用来处理分区重分配的动作。
对Zookeeper中的/isr_change_notification节点注册IsrChangeNotificetionListener,用来处理ISR集合变更的动作。
对Zookeeper中的/admin/preferred-replica-election节点添加PreferredReplicaElectionListener,用来处理优先副本选举。
对Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;
对Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
对Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。
从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对各topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。并将最新信息同步给其他所有broker。
客户端请求创建一个topic时,每一个分区副本在broker上的分配,是由集群controller来决定;
结论:里面会创建出来两个随机数
第一个随机数确定0号分区leader的位置,往后1号分区2号分区的leader依次往后顺延1
第二个随机数确定每个分区的第一个副本的位置 在leader所在机器上往后顺延(随机数+1)台机器,
该台机器就是第一个副本的位置,剩余副本依次往后顺延1
举例:
broker_id = 0~19 一共20台机器
分区数20,副本数10
第一个随机数:19
第二个随机数:0
(0,ArrayBuffer(19, 0, 1, 2, 3, 4, 5, 6, 7, 8))
(1,ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))
(2,ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
(3,ArrayBuffer(2, 3, 4, 5, 6, 7, 8, 9, 10, 11))
(4,ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10, 11, 12))
(5,ArrayBuffer(4, 5, 6, 7, 8, 9, 10, 11, 12, 13))
(6,ArrayBuffer(5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
(7,ArrayBuffer(6, 7, 8, 9, 10, 11, 12, 13, 14, 15))
(8,ArrayBuffer(7, 8, 9, 10, 11, 12, 13, 14, 15, 16))
(9,ArrayBuffer(8, 9, 10, 11, 12, 13, 14, 15, 16, 17))
(10,ArrayBuffer(9, 10, 11, 12, 13, 14, 15, 16, 17, 18))
(11,ArrayBuffer(10, 11, 12, 13, 14, 15, 16, 17, 18, 19))
(12,ArrayBuffer(11, 12, 13, 14, 15, 16, 17, 18, 19, 0))
(13,ArrayBuffer(12, 13, 14, 15, 16, 17, 18, 19, 0, 1))
(14,ArrayBuffer(13, 14, 15, 16, 17, 18, 19, 0, 1, 2))
(15,ArrayBuffer(14, 15, 16, 17, 18, 19, 0, 1, 2, 3))
(16,ArrayBuffer(15, 16, 17, 18, 19, 0, 1, 2, 3, 4))
(17,ArrayBuffer(16, 17, 18, 19, 0, 1, 2, 3, 4, 5))
(18,ArrayBuffer(17, 18, 19, 0, 1, 2, 3, 4, 5, 6))
(19,ArrayBuffer(18, 19, 0, 1, 2, 3, 4, 5, 6, 7))
其分布策略源码如下:
private def assignReplicasToBrokersRackUnaware(
nPartitions: Int, //分区的个数 10
replicationFactor: Int, //副本的个数 5
brokerList: Seq[Int],//broker的集合 8 0~7
fixedStartIndex: Int//默认值是-1 固定开始的索引位置
startPartitionId: Int): Map[Int, Seq[Int]] //默认值是-1 分区开始的位置
= {
val ret = mutable.Map[Int, Seq[Int]]()
val brokerArray = brokerList.toArray
val startIndex = if (fixedStartIndex >= 0) {
fixedStartIndex
}else {
rand.nextInt(brokerArray.length)
}
var currentPartitionId = math.max(0, startPartitionId)
var nextReplicaShift = if (fixedStartIndex >= 0) {
fixedStartIndex
}else {
rand.nextInt(brokerArray.length)
}
for (_ <- 0 until nPartitions) {
if (currentPartitionId > 0 && (currentPartitionId % brokerArray.length == 0)){
nextReplicaShift += 1
}
val firstReplicaIndex = (currentPartitionId + startIndex) % brokerArray.length
val replicaBuffer = mutable.ArrayBuffer(brokerArray(firstReplicaIndex))
for (j <- 0 until replicationFactor - 1) {
replicaBuffer += brokerArray(replicaIndex(firstReplicaIndex, nextReplicaShift, j, brokerArray.length))
}
ret.put(currentPartitionId, replicaBuffer)
currentPartitionId += 1
}
ret
}
private def replicaIndex(firstReplicaIndex: Int, secondReplicaShift: Int, replicaIndex: Int, nBrokers: Int): Int = {
val shift = 1 + (secondReplicaShift + replicaIndex) % (nBrokers - 1)
(firstReplicaIndex + shift) % nBrokers
}
分区 leader 副本的选举由控制器controller负责具体实施。
当创建分区(创建主题或增加分区都有创建分区的动作)或Leader下线(此时分区需要选举一个新的leader上线来对外提供服务)的时候都需要执行 leader 的选举动作。
选举策略:按照 ISR集合中副本的顺序查找第一个存活的副本,并且这个副本在 ISR 集合中