Cifar-10用的模型结构:
第一次卷积 (3,32,32) to (32,32,32) 卷积核(5×5),我们需要进行一下计算,看看padding和stride是多少:
未引入Sequential前:
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.conv1 = Conv2d(3, 32, 5, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten() # torch.Size([64,1024])
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
myMoudle1 = MyModule()
print(myMoudle1)
# 检测模型结构是否正确
input = torch.ones((64, 3, 32, 32))
output = myMoudle1(input)
print(output.shape) # torch.Size([64, 10])--64张图片,每张对应10分类
引入Sequential:
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
myMoudle1 = MyModule()
print(myMoudle1)
# 检测模型结构是否正确
input = torch.ones((64, 3, 32, 32))
output = myMoudle1(input)
# print(output.shape) # torch.Size([64, 10])--64张图片,每张对应10分类
writer = SummaryWriter('logs')
writer.add_graph(myMoudle1, input)
writer.close()
MyModule(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)