目录
1. Loss Function
1.1 L1Loss
1.2 MSELoss
1.3 CrossEntropyLoss
2. 交叉熵与神经网络模型的结合
2.1 反向传播
目的:
a. 计算预测值与真实值之间的差距;
b. 可通过此条件,进行反向传播。
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1, 1, 1, 3)) # 1-batch_size,1-channel,1×3
targets = torch.reshape(targets, (1, 1, 1, 3))
loss = L1Loss()
result = loss(inputs, targets)
print(result) # tensor(0.6667)
loss1 = L1Loss(reduction='sum')
result1 = loss1(inputs, targets)
print(result1) # tensor(2.)
import torch
from torch.nn import L1Loss, MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1, 1, 1, 3)) # 1-batch_size,1-channel,1×3
targets = torch.reshape(targets, (1, 1, 1, 3))
loss_mse = MSELoss()
res = loss_mse(inputs, targets)
print(res) # tensor(1.3333)
图片来源于:b站up主 我是土堆
It is useful when training a classification problem with C classes.
import torch
from torch import nn
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3)) # 1-batch_size,3 classes
loss_cross = nn.CrossEntropyLoss()
res = loss_cross(x, y)
print(res) # tensor(1.1019)
nn_loss_network.py
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=1)
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
myModule1 = MyModule()
for data in dataloader:
imgs, targets = data
outputs = myModule1(imgs)
print(outputs)
print(targets)
tensor([[-0.1187, 0.1490, -0.1015, 0.0767, -0.0677, -0.0625, 0.0553, -0.0932,
-0.0866, 0.0746]], grad_fn=)
tensor([1])
计算交叉熵损失
loss = nn.CrossEntropyLoss()
myModule1 = MyModule()
for data in dataloader:
imgs, targets = data
outputs = myModule1(imgs)
res_loss = loss(outputs, targets)
print(res_loss)
tensor(2.4315, grad_fn=
)
tensor(2.3594, grad_fn=)
tensor(2.3659, grad_fn=) ...
for data in dataloader:
imgs, targets = data
outputs = myModule1(imgs)
res_loss = loss(outputs, targets)
res_loss.backward()