回归模型的score得分为负_深度研究:回归模型评价指标R2_score

回归模型的性能的评价指标主要有:RMSE(平方根误差)、MAE(平均绝对误差)、MSE(平均平方误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏。这就需要用到R2_score,实际使用时,会遇到许多问题,今天我们深度研究一下。

预备知识

搞清楚R2_score计算之前,我们还需要了解几个统计学概念。

若用$y_i$表示真实的观测值,用$\bar{y}$表示真实观测值的平均值,用$\hat{y_i}$表示预测值,则:

回归平方和:SSR

$$SSR = \sum_{i=1}^{n}(\hat{y_i} - \bar{y})^2$$

即估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和

残差平方和:SSE

$$SSE = \sum_{i=1}^{n}(y_i-\hat{y_i} )^2$$

即估计值与真实值的误差,反映模型拟合程度

总离差平方和:SST

$$SST =SSR + SSE= \sum_{i=1}^{n}(y_i - \bar{y})^2$$

即平均值与真实值的误差,反映与数学期望的偏离程度

R2_score计算公式

R^2 score,即决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。计算公式:

$$R^2=1-\frac{SSE}{SST}$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)2}{\sum_{i=1}

你可能感兴趣的:(回归模型的score得分为负)