题意:
给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致。man每移动一格需花费$1(即单位费用=单位距离),一间house只能入住一个man。现在要求所有的man都入住house,求最小费用。
分析:
二分图的最大匹配
我采用的是最小费用最大流算法,重点在建图。
Code:
#include <cmath> #include <cstdio> #include <cstring> #include <queue> #include <vector> #include <algorithm> using namespace std; const int maxn = 200 + 10; const int INF = 1000000000; typedef long long LL; int msum, hsum; struct xy { int x, y; xy(int x = 0, int y = 0): x(x), y(y) {} }; xy M[maxn], H[maxn]; struct Edge { int from, to, cap, flow, cost; }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int vis[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init(int n) { this->n = n; for (int i = 0; i <= n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back((Edge) {from, to, cap, 0, cost}); edges.push_back((Edge) {to, from, 0, 0, -cost}); m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } bool BellmanFord(int s, int t, int& cost) { for (int i = 0; i <= n; i++) d[i] = INF; memset(vis, 0, sizeof(vis)); d[s] = 0; vis[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while (!Q.empty()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i = 0; i < G[u].size(); i++) { Edge& e = edges[ G[u][i]]; if (e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if (!vis[e.to]) { Q.push(e.to); vis[e.to] = 1;} } } } if (d[t] == INF) return false; cost += d[t] * a[t]; int u = t; while (u != s) { edges[p[u]].flow += a[t]; edges[p[u] ^ 1].flow -= a[t]; u = edges[p[u]].from; } return true; } int Mincost(int s, int t) { int cost = 0; while (BellmanFord(s, t, cost)); return cost; } }; MCMF g; int n, m, s, t; int dis(xy& a, xy& b) { return abs(a.x - b.x) + abs(a.y - b.y); } void make_graph() { int i, j, cost; char str[maxn]; msum = hsum = 0; for (i = 0; i < n; i++) { scanf("%s", str); for (j = 0; j < m; j++) if (str[j] == 'm') { M[msum++] = xy(i, j); } else if (str[j] == 'H') { H[hsum++] = xy(i, j); } } s = msum + hsum + 1, t = msum + hsum + 2; g.init(t); for (i = 0; i < msum; i++) for (j = 0; j < hsum; j++) { cost = dis(M[i], H[j]); g.AddEdge(i, j + msum, 1, cost); } for (i = 0; i < msum; i++) g.AddEdge(s, i , 1, 0); for (i = 0; i < hsum; i++) g.AddEdge(i + msum, t, 1, 0); }; int main() { while (scanf("%d%d", &n, &m)) { if (n == 0 && m == 0) break; make_graph(); int answer = g.Mincost(s, t); printf("%d\n", answer); } return 0; }