YOLOV5 + PYQT5双目测距(一)

YOLOV5 + PYQT5双目测距

  • 1. 测距源码
  • 2. 测距原理
  • 3. PYQT环境配置
  • 4. 实验结果
    • 4.1 界面1(简洁版)
    • 4.2 界面2(改进版)

1. 测距源码

详见文章 YOLOV5 + 双目测距(python)

2. 测距原理

如果想了解双目测距原理,请移步该文章 双目三维测距(python)

3. PYQT环境配置

首先安装一下pyqt5

pip install PyQt5
pip install PyQt5-tools

接着再pycharm设置里配置一下
YOLOV5 + PYQT5双目测距(一)_第1张图片
添加下面两个工具:
工具1:Qt Designer

Program D:\Anaconda3\Lib\site-packages\qt5_applications\Qt\bin\designer.exe#代码所用环境路径
Arauments : $FileName$
Working directory :$FileDir$

YOLOV5 + PYQT5双目测距(一)_第2张图片
工具2:PyUIC

Program D:\Anaconda3\Scripts\pyuic5.exe 
Arguments : $FileName$ -o $FileNameWithoutExtension$.py
Working directory :$FileDir$

YOLOV5 + PYQT5双目测距(一)_第3张图片

4. 实验结果

4.1 界面1(简洁版)

在文件目录下创建一个main.py文件,将以下代码写入

import sys
import os
from PIL import Image
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *

class filedialogdemo(QWidget):
    def __init__(self, parent=None):
        super(filedialogdemo, self).__init__(parent)
        self.resize(500,500)
        layout = QVBoxLayout()
        self.btn = QPushButton("加载图片")
        self.btn.clicked.connect(self.getfile)
        layout.addWidget(self.btn)


        self.le = QLabel(" csdn:积极向上的mr.d")
        self.btn1 = QPushButton("加载本地摄像头")
        self.btn1.clicked.connect(self.getfiles)
        layout.addWidget(self.btn1)
        layout.addWidget(self.le)

        self.setLayout(layout)
        self.setWindowTitle("双目测距系统")

    def getfile(self):
        '''
        getOpenFileName():返回用户所选择文件的名称,并打开该文件
        第一个参数用于指定父组件
        第二个参数指定对话框标题
        第三个参数指定目录
        第四个参数是文件扩展名过滤器
        '''

        self.fname, _  = QFileDialog.getOpenFileName(self, 'Open file',r'C:\Users\hp\Desktop\sale\yolov5_ceju_pro\data\images',"Image files (*.jpg *.gif *.mp4)")
        self.le.setPixmap(QPixmap(self.fname))
        import shutil
        shutil.rmtree('./runs/detect/exp')
        str=(r'python C:\Users\hp\Desktop\sale\yolov5_ceju_pro\detect_01.py --source ' + self.fname+ ' --exist-ok ')
        os.system(str)  # 运行图片识别文件
        path = os.listdir(r'C:\Users\hp\Desktop\sale\yolov5_ceju_pro\runs\detect\exp')
        s = path[0]
        pathend = r'C:\Users\hp\Desktop\sale\yolov5_ceju_pro\runs\detect\exp'+ '\\'+ s
        I = Image.open(pathend)
        I.show()

    def getfiles(self):   # 加载摄像头
        str=(r'python C:\Users\hp\Desktop\sale\yolov5_ceju_pro\detect_01.py ')   # python命令 + B.py + 参数:IC.txt'
        os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # 不加这个可能会报错
        os.system(str)


if __name__ == '__main__':
    app = QApplication(sys.argv)
    ex = filedialogdemo()
    ex.show()
    sys.exit(app.exec_())

运行main.py即可实现检测
YOLOV5 + PYQT5双目测距(一)_第4张图片

4.2 界面2(改进版)

创建一个main1.py文件,将以下代码写入

# Form implementation generated from reading ui file '.\project.ui'
# Created by: PyQt5 UI code generator 5.9.2

import sys
import cv2
import argparse
import random
import torch
import numpy as np
import torch.backends.cudnn as cudnn

from PyQt5 import QtCore, QtGui, QtWidgets
from utils.torch_utils import select_device
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.datasets import letterbox
from utils.plots import plot_one_box

from stereo.dianyuntu_yolo import preprocess, undistortion, getRectifyTransform, draw_line, rectifyImage, \
    stereoMatchSGBM
from stereo import stereoconfig
class Ui_MainWindow(QtWidgets.QMainWindow):
    def __init__(self, parent=None):
        super(Ui_MainWindow, self).__init__(parent)
        self.timer_video = QtCore.QTimer()
        self.setupUi(self)
        self.init_logo()
        self.init_slots()
        self.cap = cv2.VideoCapture()
        self.out = None
        # self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(*'XVID'), 20.0, (640, 480))

        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', nargs='+', type=str,
                            default='yolov5s.pt', help='model.pt path(s)')
        # file/folder, 0 for webcam
        parser.add_argument('--source', type=str,
                            default='data/images', help='source')
        parser.add_argument('--img-size', type=int,
                            default=640, help='inference size (pixels)')
        parser.add_argument('--conf-thres', type=float,
                            default=0.25, help='object confidence threshold')
        parser.add_argument('--iou-thres', type=float,
                            default=0.45, help='IOU threshold for NMS')
        parser.add_argument('--device', default='',
                            help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument(
            '--view-img', action='store_true', help='display results')
        parser.add_argument('--save-txt', action='store_true',
                            help='save results to *.txt')
        parser.add_argument('--save-conf', action='store_true',
                            help='save confidences in --save-txt labels')
        parser.add_argument('--nosave', action='store_true',
                            help='do not save images/videos')
        parser.add_argument('--classes', nargs='+', type=int,
                            help='filter by class: --class 0, or --class 0 2 3')
        parser.add_argument(
            '--agnostic-nms', action='store_true', help='class-agnostic NMS')
        parser.add_argument('--augment', action='store_true',
                            help='augmented inference')
        parser.add_argument('--update', action='store_true',
                            help='update all models')
        parser.add_argument('--project', default='runs/detect',
                            help='save results to project/name')
        parser.add_argument('--name', default='exp',
                            help='save results to project/name')
        parser.add_argument('--exist-ok', action='store_true',
                            help='existing project/name ok, do not increment')
        self.opt = parser.parse_args()
        print(self.opt)

        source, weights, view_img, save_txt, imgsz = self.opt.source, self.opt.weights, self.opt.view_img, self.opt.save_txt, self.opt.img_size

        self.device = select_device(self.opt.device)
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA

        cudnn.benchmark = True

        # Load model
        self.model = attempt_load(
            weights, map_location=self.device)  # load FP32 model
        stride = int(self.model.stride.max())  # model stride
        self.imgsz = check_img_size(imgsz, s=stride)  # check img_size
        if self.half:
            self.model.half()  # to FP16

        # Get names and colors
        self.names = self.model.module.names if hasattr(
            self.model, 'module') else self.model.names
        self.colors = [[random.randint(0, 255)
                        for _ in range(3)] for _ in self.names]

    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(800, 600)
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.pushButton = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton.setGeometry(QtCore.QRect(20, 130, 112, 34))
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_2.setGeometry(QtCore.QRect(20, 220, 112, 34))
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_3.setGeometry(QtCore.QRect(20, 300, 112, 34))
        self.pushButton_3.setObjectName("pushButton_3")
        self.groupBox = QtWidgets.QGroupBox(self.centralwidget)
        self.groupBox.setGeometry(QtCore.QRect(160, 90, 611, 411))
        self.groupBox.setObjectName("groupBox")
        self.label = QtWidgets.QLabel(self.groupBox)
        self.label.setGeometry(QtCore.QRect(10, 40, 561, 331))
        self.label.setObjectName("label")
        self.textEdit = QtWidgets.QTextEdit(self.centralwidget)
        self.textEdit.setGeometry(QtCore.QRect(150, 10, 471, 51))
        self.textEdit.setObjectName("textEdit")
        MainWindow.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(MainWindow)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 30))
        self.menubar.setObjectName("menubar")
        MainWindow.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(MainWindow)
        self.statusbar.setObjectName("statusbar")
        MainWindow.setStatusBar(self.statusbar)

        self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)

    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "双目测距系统"))
        self.pushButton.setText(_translate("MainWindow", "图片检测"))
        self.pushButton_2.setText(_translate("MainWindow", "摄像头检测"))
        self.pushButton_3.setText(_translate("MainWindow", "视频检测"))
        self.groupBox.setTitle(_translate("MainWindow", "检测结果"))
        self.label.setText(_translate("MainWindow", "TextLabel"))
        self.textEdit.setHtml(_translate("MainWindow",
                                         "\n"
                                         "\n"
                                         "

双目测距系统

"
)) def init_slots(self): self.pushButton.clicked.connect(self.button_image_open) self.pushButton_3.clicked.connect(self.button_video_open) self.pushButton_2.clicked.connect(self.button_camera_open) self.timer_video.timeout.connect(self.show_video_frame) def init_logo(self): pix = QtGui.QPixmap('wechat.jpg') self.label.setScaledContents(True) self.label.setPixmap(pix) def button_image_open(self): print('button_image_open') name_list = [] img_name, _ = QtWidgets.QFileDialog.getOpenFileName( self, "打开图片", "", "*.jpg;;*.png;;All Files(*)") if not img_name: return img = cv2.imread(img_name) print(img_name) showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] # Convert # BGR to RGB, to 3x416x416 img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = self.model(img, augment=self.opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) print(pred) # Process detections for i, det in enumerate(pred): if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], showimg.shape).round() for *xyxy, conf, cls in reversed(det): label = '%s %.2f' % (self.names[int(cls)], conf) name_list.append(self.names[int(cls)]) plot_one_box(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) cv2.imwrite('prediction.jpg', showimg) self.result = cv2.cvtColor(showimg, cv2.COLOR_BGR2BGRA) self.result = cv2.resize( self.result, (640, 480), interpolation=cv2.INTER_AREA) self.QtImg = QtGui.QImage( self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32) self.label.setPixmap(QtGui.QPixmap.fromImage(self.QtImg)) def button_video_open(self): video_name, _ = QtWidgets.QFileDialog.getOpenFileName( self, "打开视频", "", "*.mp4;;*.avi;;All Files(*)") if not video_name: return flag = self.cap.open(video_name) if flag == False: QtWidgets.QMessageBox.warning( self, u"Warning", u"打开视频失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok) else: self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc( *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4)))) self.timer_video.start(30) self.pushButton_3.setDisabled(True) self.pushButton.setDisabled(True) self.pushButton_2.setDisabled(True) def button_camera_open(self): if not self.timer_video.isActive(): # 默认使用第一个本地camera flag = self.cap.open(0) if flag == False: QtWidgets.QMessageBox.warning( self, u"Warning", u"打开摄像头失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok) else: self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc( *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4)))) self.timer_video.start(30) self.pushButton_3.setDisabled(True) self.pushButton.setDisabled(True) self.pushButton_2.setText(u"关闭摄像头") else: self.timer_video.stop() self.cap.release() self.out.release() self.label.clear() self.init_logo() self.pushButton_3.setDisabled(False) self.pushButton.setDisabled(False) self.pushButton_2.setText(u"摄像头检测") def show_video_frame(self): name_list = [] flag, img = self.cap.read() config = stereoconfig.stereoCamera() map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config) if img is not None: showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] # Convert # BGR to RGB, to 3x416x416 img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = self.model(img, augment=self.opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) # Process detections for i, det in enumerate(pred): # detections per image if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], showimg.shape).round() # Write results for *xyxy, conf, cls in reversed(det): x = (xyxy[0] + xyxy[2]) / 2 y = (xyxy[1] + xyxy[3]) / 2 if (0 < x <= 1280): height_0, width_0 = showimg.shape[0:2] iml = showimg[0:int(height_0), 0:int(width_0 / 2)] imr = showimg[0:int(height_0), int(width_0 / 2):int(width_0)] height, width = iml.shape[0:2] config = stereoconfig.stereoCamera() map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config) iml_rectified, imr_rectified = rectifyImage(iml, imr, map1x, map1y, map2x, map2y) line = draw_line(iml_rectified, imr_rectified) iml = undistortion(iml, config.cam_matrix_left, config.distortion_l) imr = undistortion(imr, config.cam_matrix_right, config.distortion_r) iml_, imr_ = preprocess(iml, imr) iml_rectified_l, imr_rectified_r = rectifyImage(iml_, imr_, map1x, map1y, map2x,map2y) disp, _ = stereoMatchSGBM(iml_rectified_l, imr_rectified_r, True) points_3d = cv2.reprojectImageTo3D(disp, Q) distance = ((points_3d[int(y), int(x), 0] ** 2 + points_3d[int(y), int(x), 1] ** 2 + points_3d[int(y), int(x), 2] ** 2) ** 0.5) / 10 distance = '%.2f' % distance label = '%s %.2f' % (self.names[int(cls)], conf) label = label + " " + "dis:" + str(distance) + "m" name_list.append(self.names[int(cls)]) print(label) plot_one_box( xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) self.out.write(showimg) show = cv2.resize(showimg, (640, 480)) self.result = cv2.cvtColor(show, cv2.COLOR_BGR2RGB) showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB888) self.label.setPixmap(QtGui.QPixmap.fromImage(showImage)) else: self.timer_video.stop() self.cap.release() self.out.release() self.label.clear() self.pushButton_3.setDisabled(False) self.pushButton.setDisabled(False) self.pushButton_2.setDisabled(False) self.init_logo() if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) ui = Ui_MainWindow() ui.show() sys.exit(app.exec_())

YOLOV5 + PYQT5双目测距(一)_第5张图片
对 if name == ‘main’: 改写添加背景图片

if __name__ == '__main__':
    stylesheet = """
                Ui_MainWindow {
                    background-image: url("01.jpg");
                    background-repeat: no-repeat;
                    background-position: center;
                }
            """
    app = QtWidgets.QApplication(sys.argv)
    app.setStyleSheet(stylesheet)
    ui = Ui_MainWindow()
    ui.show()
    sys.exit(app.exec_())

YOLOV5 + PYQT5双目测距(一)_第6张图片
视频展示:

工程源码下载:https://github.com/up-up-up-up/yolov5_ceju-pyqt/tree/main

文章内容后续会慢慢完善…

你可能感兴趣的:(yolo应用,三维测距,YOLO,YOLO,qt,三维测距)