- Android studio之编译提示Could not find :umeng-asms-v1.2.1:.
码莎拉蒂 .
AndriodstudioAndroidCouldnotfind导入正确的aar文件umeng-asms-v1flatDir
1、问题Couldnotdeterminethedependenciesoftask':app:compileDebugJavaWithJavac'.>Couldnotresolvealltaskdependenciesforconfiguration':app:debugCompileClasspath'.>Couldnotfind:umeng-asms-v1.2.1:.Requiredby:p
- 使用大语言模型API在AI应用中的实现
qq_37836323
人工智能语言模型自然语言处理python
随着人工智能技术的迅速发展,大语言模型(LLM)在自然语言处理(NLP)领域的应用越来越广泛。本文将介绍如何使用大语言模型API来实现一些基础的AI应用,并提供一个简单的demo代码,帮助大家更好地理解和使用这些技术。大语言模型API简介大语言模型(如GPT-4)能够理解和生成类似人类的文本。这些模型可以应用于各种任务,包括文本生成、语言翻译、情感分析、对话系统等。为了方便国内用户访问这些强大的模
- 手机端Flutter、React Native与原生安卓、iOS交互的方案及设计原理
JafarOne
智能手机flutterreactnativeAndroidiOSJava
手机端Flutter、ReactNative与原生安卓、iOS交互的方案及设计说明一、交互方案与代码示例1.Flutter与原生交互方案核心方案:通过MethodChannel和EventChannel实现双向通信。原理:Flutter的Channel机制基于平台信道(如MethodChannel),通过Dart引擎与原生层的二进制消息传递完成调用。原生代码需监听信道,并根据方法名执行操作,结果通
- 【 <二> 丹方改良:Spring 时代的 JavaWeb】之 Spring Boot 中的 RESTful API 设计:从上手到骨折
Foyo Designer
springspringbootrestfulSpringMVCAsyncCrossOrigin
点击此处查看合集https://blog.csdn.net/foyodesigner/category_12907601.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12907601&sharerefer=PC&sharesource=FoyoDesigner&sharefrom=from_link一、开篇整活儿咱今儿个唠唠Spr
- C#电子相册:面向对象设计与架构实践
金融先生-Frank
本文还有配套的精品资源,点击获取简介:C#电子相册是一个使用高级编程语言C#开发的Windows平台应用程序。该项目采用面向对象编程方法,将对象如照片和相册封装、继承和多态地组织起来。它可能采用了MVC、MVVM或MVP架构模式,并使用.NETFramework或.NETCore以及VisualStudio作为开发环境。数据库管理部分涉及SQL数据库,支持相册数据的存储与检索。文件列表中的"eri
- 【NLP】 API在大语言模型中的应用
Nerous_
深度学习自然语言处理语言模型人工智能
大语言模型(LargeLanguageModels,LLMs)通过API(应用程序接口)为开发者提供了便捷的调用方式,使其能够快速集成自然语言处理能力到各类应用中。以下是API在LLM中的核心应用场景及技术实现细节:一、核心应用场景自然语言理解与生成应用示例:智能客服:解析用户问题并生成回复(如ChatGPTAPI)。内容创作:自动生成文章、广告文案或代码(如OpenAI的GPT-4)。技术实现:
- 路由交换技术——多私网下NAPT、FTP服务公网映射配置的实验
「J1e」
网络网络协议tcp/ip
网络地址转换(NAT)技术概述1.定义与背景网络地址转换(NetworkAddressTranslation,NAT)是一种在IP数据包传输过程中修改源或目标IP地址及端口的技术,主要用于解决IPv4地址短缺问题。随着互联网设备激增,NAT通过允许多个设备共享单一公网IP地址,显著延缓了IPv4地址耗尽的速度。2.工作原理NAT的核心是通过中间设备(如路由器、防火墙)建立内网私有地址与外网公有地址
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- 【Q&A】Qt中直接渲染和离屏渲染效率哪个高?
浅慕Antonio
Q&Aqt信息可视化开发语言
直接渲染和离屏渲染的效率取决于具体场景和实现方式,以下是详细对比分析:一、直接渲染(On-screenRendering)原理直接将图形数据绘制到屏幕缓冲区(BackBuffer),完成后通过交换缓冲区显示到屏幕。通常在paintEvent等事件中通过QPainter直接绘制。优势减少数据复制:无需额外的缓冲区传输,直接写入屏幕缓冲区。实时性高:适合需要快速更新的场景(如动画、实时数据可视化)。简
- 【轻松学C:编程小白的大冒险】— 09 运算符与表达式的实际应用
秋知叶i
#C语言c语言开发语言
在编程的艺术世界里,代码和灵感需要寻找到最佳的交融点,才能打造出令人为之惊叹的作品。而在这座秋知叶i博客的殿堂里,我们将共同追寻这种完美结合,为未来的世界留下属于我们的独特印记。【轻松学C:编程小白的大冒险】—09运算符与表达式的实际应用一、运算符家族大阅兵二、算术运算符:数学界的五虎上将1.加法运算符`+`2.减法运算符`-`3.乘法运算符`*`4.除法运算符`/`5.取模运算符`%`二、赋值运
- c++ stl库有哪些技术
C++ 老炮儿的技术栈
c++算法学习笔记c++
C++STL(标准模板库)包含以下一些重要技术:容器-序列容器:如vector(动态数组),支持快速随机访问和尾部插入/删除;list(双向链表),适合频繁的插入和删除操作;deque(双端队列),能在两端高效地进行插入和删除。-关联容器:像map(键值对映射),基于红黑树实现,提供快速的查找、插入和删除操作;set(集合),同样基于红黑树,元素唯一且有序。迭代器提供了一种统一的方式来访问容器中的
- 设计模式之工厂模式的优缺点
C++ 老炮儿的技术栈
算法c++学习笔记
工厂模式是一种创建对象的设计模式,它将对象的创建和使用分离。以下是工厂模式的优缺点:优点-解耦对象的创建和使用:使得代码的依赖关系更加清晰,使用者不需要了解对象的具体创建过程,只需要关心如何使用对象,降低了代码的耦合度。-提高可维护性和可扩展性:当需要创建新的对象或者修改对象的创建逻辑时,只需要在工厂类中进行修改,而不需要在所有使用该对象的地方进行修改,便于代码的维护和扩展。-便于代码复用:工厂类
- OpenCV图像拼接(1)自动校准之校准旋转相机的函数calibrateRotatingCamera()
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::calibrateRotatingCamera是OpenCV中用于校准旋转相机的函数。它特别适用于那种相机相对于一个固定的场景进行纯旋转运动的情况,比如在全景拼接过程中。此函数可以从一系列单应性矩阵(HomographyMatrices)中
- CCF CSP 历年真题 C语言版 满分代码集合 (至2021.9 持续更新中
JY_0329
CCFc语言开发语言cspccf算法
CCFCSP历年真题C语言版满分代码集合(全部原创)2021-9-1数组推导2021-9-2非零段划分2021-4-1灰度直方图2021-4-2领域均值2020-12-1期末预测之安全指数2020-12-2期末预测之最佳阈值2020-9-1称检测点查询2020-9-2风险人群筛查2020-6-1线性分类器2020-6-2稀疏向量2019-12-1报数2019-12-2回收站选址2019-9-1小明
- 在网页跑3D多人互动之渲染效能瓶颈
微网兔子
後端技術前端网络服务器c++unity架构3d
累积到目前测试回馈给我们的心得,主要问题还是在前端显示的部分。所以就来聊聊在网页跑3D多人互动之渲染效能瓶颈!!!数万个3D角色与场景物件需即时渲染,导致GPU/CPU过载,低端设备卡顿。已经使用的解决方案:LOD(LevelofDetail)技术:根据距离动态调整模型细节,远距离使用低多边形模型。InstancedRendering:批次渲染相同模型(如重复的树木、建筑物)。Culling(剔除
- Redis操作命令详解
HaYiBoy
软件工具安装数据库缓存redis
Redis(RemoteDictionaryServer,远程字典服务)是一个开源的键值存储系统,通常用作数据库、缓存或消息传递系统。它支持多种数据结构,如字符串(strings)、哈希(hashes)、列表(lists)、集合(sets)、有序集合(sortedsets)等。本文将详细介绍Redis的一些常用操作命令,帮助你更好地使用Redis。1.连接命令1.1redis-cliredis-c
- 通俗详解redis底层数据结构哈希表之渐进式rehash
八股文领域大手子
javajvm算法数据库mysqlredis
一、为什么要用渐进式rehash?假设你家的旧柜子(哈希表)装满了,需要换个大柜子。如果一次性把所有东西倒腾到新柜子,你可能得停下手头所有事,累得半死(这就是传统rehash的问题:卡顿)。Redis为了不“累死”,选择边搬边用,每次搬一点,这就是“渐进式”。二、具体怎么“搬家”?1️⃣先准备好新柜子(分配空间)•Redis会先申请一个更大的新哈希表(比如旧表两倍大),这时候系统里同时有「旧表」和
- Zset应用之滑动窗口限流
八股文领域大手子
java数据库服务器算法开发语言
滑动窗口限流的实现原理滑动窗口限流的核心是:统计某个时间窗口内的请求数,若超过阈值则拒绝新请求。用RedisZSet实现的关键步骤:1.数据结构设计ZSetKey:rate_limit:api1(示例)member:请求唯一标识(如UUID或IP+时间戳)score:请求的时间戳(单位需一致,如秒或毫秒)2.限流逻辑(分步骤)假设限制60秒内最多100次请求:步骤1:删除时间窗口外的旧请求#删除6
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- html实体字符
Qhumaing
HTML学习html前端
HTML实体字符HTML实体字符(HTMLEntities)是在HTML中用来表示那些在HTML文档中直接使用可能会引起问题的特殊字符的一种方法。这些特殊字符包括但不限于尖括号、与号、引号等,它们在HTML中有特定的用途(如标签界定符、属性值分隔符等),如果直接使用,浏览器可能会误解它们。以下是常见的HTML实体字符及其用途:<-小于号()&-与号(&)"-双引号(")&a
- k8s往secret里导入证书_Kubernetes K8S之存储Secret详解
weixin_39604598
k8s往secret里导入证书
K8S之存储Secret概述与类型说明,并详解经常使用Secret示例html主机配置规划服务器名称(hostname)系统版本配置内网IP外网IP(模拟)k8s-masterCentOS7.72C/4G/20G172.16.1.11010.0.0.110k8s-node01CentOS7.72C/4G/20G172.16.1.11110.0.0.111k8s-node02CentOS7.72C/
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 记20个忘10个之七:身体结构
nshkfhwr
beauty美女head头body身hand手foot脚lap大腿面organ器官
记20个忘10个之七:身体结构附送几个单词:beautyn.美女lookern.靓女girln.女孩lassn.少女,年轻女子lassien.少女,小姑娘maidenn.少女,未婚女子maidn.女仆ladyn.女士;小姐hostessn.女主人;女房东mistressn.女主人,主妇;情妇blonden.金发女郎这样是不是很好记呀,^_^
- 股票交易之多策略协调规划
leo_厉锵
金融栏金融
前言:在股票交易领域,市场走势受宏观经济、行业竞争、公司基本面及投资者情绪等诸多因素影响,复杂多变。单纯依靠单一技术指标,如均线、MACD等做出买卖决策,犹如盲人摸象,易陷入片面判断,导致投资失误。因此,协调运用多种策略构建完善交易体系十分必要。以下为具体策略内容:一、止损与止盈的协同设置(一)止损点设定原则固定比例止损:单笔亏损不超本金5%,适用于短线及波动适中品种。动态调整止损:加仓后成本下降
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- OpenHarmony子系统开发 - 电源管理(一)
__Benco
openharmony子系统开发harmonyos人工智能
OpenHarmony子系统开发-电源管理(一)一、电源模式定制开发指导概述简介OpenHarmony默认提供了电源模式(如正常模式、性能模式、省电模式、超级省电模式)的特性。但由于不同产品的部件存在差异,导致在同样场景下电源模式的配置需要也存在差异,为此,OpenHarmony提供了电源管理的定制方式,产品定制开发者可根据产品的设计规格来定制这些特性。基本概念OpenHarmony支持的可定制的
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- c语言数据结构之栈
Qurry.OS
数据结构数据结构c语言链表
前言栈是一种先进后出的结构,只能对栈顶进行操作,数据入栈、出栈都在栈顶处,换句话说,栈只能对栈顶端进行操作,禁止跳过栈顶插入或删除其它数据。栈可以简单分为数组栈和链表栈;数组栈设定了空间大小,而链表栈在内存允许的范围内无空间大小限制,通过链表的方式将栈链接起来。C语言数据结构之单链表C语言数据结构之双向链表c语言数据结构之栈c语言数据结构之队列C语言数据结构之树1链表栈1.1数据结构在单链表的基础
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt