【代码随想录】刷题Day53

1.最长公共子序列

1143. 最长公共子序列

和之前的一道题目的区别就是这个子序列不需要每个字符相邻。那么条件就变成两种了,一种是当前的字符相同,一种是不同。相同跟之前的条件一样;不同则需要继承上次比较的较大值。if (text1[i - 1] == text2[j - 1]),则dp[i][j] = dp[i - 1][j - 1] + 1;此外就是继承的写法,就是i-1和j-1的字符不一样,那么就是 看i-2和j-1字符组成的大小 以及 i-1和j-2字符组成的大小之间比较的大小取舍,即dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector> dp(text1.size() + 1, vector(text2.size() + 1, 0));
        for (int i = 1; i < text1.size() + 1; i++)
        {
            for (int j = 1; j < text2.size() + 1; j++)
            {
                if (text1[i - 1] == text2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

2.不相交的线

1035. 不相交的线

跟上一题其实是一样的,因为本质都是往后找子列

class Solution {
public:
    int maxUncrossedLines(vector& nums1, vector& nums2) {
        vector> dp(nums1.size() + 1, vector(nums2.size() + 1, 0));
        for (int i = 1; i < nums1.size() + 1; i++)
        {
            for (int j = 1; j < nums2.size() + 1; j++)
            {
                if (nums1[i - 1] == nums2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
            }
        }
        return dp[nums1.size()][nums2.size()];
    }
};

3.最大子数组和

53. 最大子数组和

1.会超出存储范围的dp,其实思路就是暴力解,只是表达式简单易懂。

2.dp[i][j]:从i到j位置的最大子数组和。

3.那么i

4.初始化就是:将dp[i][i]位置的数变为nums[i];dp[0][i]为前一个数的累加dp[0][i] = dp[0][i - 1] + nums[i];

class Solution {
public:
    int maxSubArray(vector& nums) {
        vector>dp(nums.size(), vector(nums.size(), 0));
        dp[0][0] = nums[0];
        for (int i = 1; i < nums.size(); i++)
        {
            dp[0][i] = dp[0][i - 1] + nums[i];
        }
        int ret = nums[0];
        for (int i = 0; i < nums.size(); i++)
        {
            dp[i][i] = nums[i];
            ret = max(ret, dp[i][i]);
            for (int j = i + 1; j < nums.size(); j++)
            {
                dp[i][j] = dp[i][j - 1] + nums[j];
                ret = max(ret, dp[i][j]);
            }
        }
        return ret;
    }
};

1.dp[i]:为i位置的最大子数组和

2.条件:就是看前面一个dp加上当前节点和单独是该节点的数之间的比较dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.初始化dp[0] = nums[0];

class Solution {
public:
    int maxSubArray(vector& nums) {
        vectordp(nums.size(), 0);
        dp[0] = nums[0];
        int ret = dp[0];
        for (int i = 1; i < nums.size(); i++)
        {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};

你可能感兴趣的:(刷题,算法,leetcode,职场和发展,c++,动态规划)