Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存。
大致流程如下:
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
号段模式有不懂的可以看看《分布式id解决方案—1.4节》
由于号段模式依赖于数据库表,我们先创建数据库和表:
CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '',
`max_id` bigint(20) NOT NULL DEFAULT '1',
`step` int(11) NOT NULL,
`description` varchar(256) DEFAULT NULL,
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;
insert into leaf_alloc(biz_tag, max_id, step, description) values('leaf-segment-test', 1, 2000, 'Test leaf Segment Mode Get Id')
这些字段在插入数据时有哪些注意事项呢?
我们需要先导入Leaf项目:点击此处下载
导入之后的项目如下:
在leaf-server项目下修改配置(leaf.properties)如下:
leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf?autoReconnect=true&useUnicode=true&characterEncoding=utf-8&&zeroDateTimeBehavior=CONVERT_TO_NULL&&serverTimezone=GMT%2B8
leaf.jdbc.username=root
leaf.jdbc.password=root
leaf.snowflake.enable=false
注意:leaf.segment和leaf.snowflake务必保证只有一个开启,由于本节使用的是segment(号段模式),所以开启此服务
然后由于我的mysql服务器是8.0.1版本,所以我将pom中的mysql-connector以及druid对做了相应的版本修改,注意如果你的mysql版本是5.x.x版本的就无须任何修改,否则的话就要到父级的pom下修改成和我同样的版本
启动项目leaf-server
访问地址:http://127.0.0.1:8080/api/segment/get/leaf-segment-test
注意:leaf-segment-test是我们的key,这个key来自于哪儿呢,来自于刚刚我们insert的biz_tag
下面在拓展讲一点:
leaf的号段模式在更新号段时是无阻塞的,当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。
所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。
好,眼见为实,我们看看 这个点到底什么时候会发生,由于我们初始化的时候把maxx_id和step设置的太大,我们修改一下,step=10,max_id=1,如下所示:
我们去访问地址:http://127.0.0.1:8080/api/segment/get/leaf-segment-test
我们可以看到我们id生成到2的时候,max_id就变成了11,我们再继续获取id
我们获取到3的时候,max_id就已经变成了21
这是怎么一回事呢?
Leaf-segment采用双buffer的方式,它的服务内部有两个号段缓存区segment。
当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。
简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。
那我们在平时开发时去怎么设置步长呢?
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
访问:http://127.0.0.1:8080/cache
可以看到:
在具体实现雪花算法之前,建议大家先去读一下《分布式id解决方案—1.5节》
我简单的给大家说一下雪花算法的原理:
Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
好了说了那么多,我们看看Leaf-snowflake是怎么启动的?
但Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。
启动Leaf-snowflake模式也比较简单,启动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。
leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=false
leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
注意:在启动项目之前,请保证已经正常启动zookeeper
访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
可以看到:
至此Leaf的两种使用方法就结束了