1. Spark中的RDD
Resilient Distributed Datasets(弹性分布式数据集)
Spark中的最基本的抽象
有了RDD的存在我们就可以像操作本地集合一样操作分布式的数据
包含所有元素的分区的集合
RDD包含了很多的分区
2. RDD中的弹性
RDD中的数据是可大可小的
RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘
RDD有自动容错功能,当其中一个RDD中的分区的数据丢失,或者当前节点故障时,rdd会根据依赖关系重新计算该分区的数据
3. RDD在Spark中的作用
迭代式计算
其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算
交互式计算
因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以向操作本地集合对象一样轻松操作分布式数据集
4. Spark中的名词解释
ClusterManager :在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器
Worker:从节点,负责控制计算节点,启动Executor。在YARN模式中为NodeManager,负责计算节点的控制。
Driver 运行Application的main()函数并创建SparkContext
Executor (CoarseGrainedExecutorBackend)在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors
SparkContext :整个应用的上下文,控制应用的生命周期
RDD :Spark中的最基本的数据抽象
DAG Scheduler : 根据DAG(有向无环图)切分stage,并且生成task,以taskset的形式返回
Task Schedual: 调度task,把task交给executor
Stage: 一个Spark作业一般包含一到多个Stage。
Task :一个Stage包含一到多个Task,通过多个Task实现并行运行的功能
Transformations :转换操作,Transformation是lazy的,不会马上执行,只有当调用action时才会执行
Actions : 动作
SparkEnv : 线程级别的上下文,存储运行时的重要组件的引用
5. 创建RDD的两种方式
通过并行化集合创建RDD(用于测试)
val list = List("java c++ java","java java java c++")
val rdd = sc.parallelize(list)
通过加载hdfs中的数据创建RDD(生产环境)
val rdd = sc.textFile("hdfs://uplooking01:8020/sparktest/")
6. IDEA开发Spark
6.1 pom依赖
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0
com.uplooking.bigdata
2018-11-08-spark
1.0-SNAPSHOT
1.8
1.8
2.11.8
2.2.0
2.7.5
org.scala-lang
scala-library
${scala.version}
org.apache.spark
spark-core_2.11
${spark.version}
org.apache.spark
spark-sql_2.11
${spark.version}
org.apache.hadoop
hadoop-client
${hadoop.version}
net.alchim31.maven
scala-maven-plugin
3.2.2
scala-compile-first
process-resources
add-source
compile
scala-test-compile
process-test-resources
testCompile
org.apache.maven.plugins
maven-compiler-plugin
compile
compile
org.apache.maven.plugins
maven-shade-plugin
2.4.3
false
package
shade
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
6.2 编写spark程序
val conf = new SparkConf()
conf.setAppName("Ops1")
val sc = new SparkContext(conf)
val rdd1: RDD[String] = sc.parallelize(List("java c+ java", "java java c++"))
val ret = rdd1.collect().toBuffer
println(ret)
6.3 打包
6.4 在Driver上运行jar包
spark-submit --master spark://uplooking01:7077 --class com.uplooking.bigdata.spark01.Ops1 original-spark-1.0-SNAPSHOT.jar
7. 本地运行Spark程序
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable
object Ops1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setAppName("Ops1")
conf.setMaster("local[4]")
val sc = new SparkContext(conf)
//一般不会指定最小分区数
val rdd1 = sc.textFile("hdfs://uplooking01:8020/sparktest/")
val rdd2: RDD[String] = rdd1.flatMap(line => line.split(" "))
val rdd3: RDD[(String, Int)] = rdd2.map(word => (word, 1))
val rdd4: RDD[(String, Int)] = rdd3.reduceByKey(_ + _)
val ret: mutable.Buffer[(String, Int)] = rdd4.collect().toBuffer
println(ret)
println(rdd1.partitions.length)
}
}
8. RDD中的分区数
并行化的方式指定分区数(一般会指定分区数)
默认如果创建RDD时不指定分区数,那么就会创建cpu核数个分区
手动指定分区数
val rdd = sc.parallelize(List("java c+ java", "java java c++"), 2)
textFile的方式指定分区数
默认如果创建RDD时不指定最小分区数,那么就会创建至少2个分区的RDD
一般不会指定最小分区数
不指定最小分区数,有切片的数量个分区
9. Spark作业的运行流程
构建DAG
根据DAG切分Stage,每个Stage对应一组相同计算逻辑不能计算数据的Task,以TastSet的形式返回
TaskSchedual调度task,把task发送到executor中去,用Runnable进行包装进给线程池
Executor执行task
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。