- 大模型和数据要素赋能农业生产数智化解决方案
数智化领地
数字化转型数据治理主数据数据仓库数字乡村数字农业农村智慧农业乡村振兴架构大数据运维安全数据库
大模型和数据要素赋能农业生产数智化解决方案大模型和数据要素赋能农业生产数智化解决方案引言背景与意义解决方案概述大模型在农业生产中的应用作物生长模型病虫害预测模型农业气象模型数据要素在农业生产中的作用土壤数据气象数据作物生长数据数智化解决方案的设计与实现总体架构设计数据处理与分析模块智能决策与支持模块解决方案应用效果评估及推广前景应用效果评估方法推广前景展望第1张大家好!我今天要介绍的主题是:大模型
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- Qt详解三大输入框QPlainTextEdit、QTextBrowser与QTextEdit
人才程序员
QT高级教程qt开发语言c语言c++界面嵌入式硬件单片机
文章目录前言QPlainTextEdit什么是QPlainTextEditQPlainTextEdit能干什么为什么需要QPlainTextEdit常用函数示例代码QTextBrowser什么是QTextBrowserQTextBrowser能干什么为什么需要QTextBrowser常用函数示例代码QTextEdit什么是QTextEditQTextEdit能干什么为什么需要QTextEdit常用
- Java基础常见面试题及详细答案(总结40个)
java梅洛
经验分享数据库大数据javapostgresql
最近看到网上流传着各种面试经验及面试题,往往都是一大堆技术题目贴上去,但是没有答案。为此我业余时间整理了40道Java基础常见的面试题及详细答案,望各路大牛发现不对的地方不吝赐教,留言即可。八种基本数据类型的大小,以及他们的封装类引用数据类型Switch能否用string做参数equals与==的区别自动装箱,常量池Object有哪些公用方法Java的四种引用,强弱软虚,用到的场景Hashcode
- 赋能农业数字化转型 雏森科技助力“聚农拼”平台建设
CSSoftTechAI
科技人工智能后端
赋能农业数字化转型,雏森科技助力“聚农拼”平台建设在数字化浪潮席卷各行业的今天,农业领域也在积极探索转型升级之路。中农集团一直以“根植大地,服务三农”为核心,以“乡村振兴,农民增收”为目标,及时响应国家号召,在数字化浪潮改革的当下积极布局农业数字化转型。在中央一号文件连续多年对发展智慧农业作出重要部署的背景下,集团领导们积极响应,组织开发了“聚农拼”数字农业服务平台,通过互联网信息化、数字化精准匹
- Qwen2.5 技术报告
三谷秋水
大模型机器学习人工智能语言模型机器学习人工智能
24年12月来自通义千问的论文“Qwen2.5TechnicalReport”。本报告介绍Qwen2.5,这是一系列全面的大语言模型(LLM),旨在满足多样化的需求。与之前的迭代相比,Qwen2.5在预训练和后训练阶段都有显著的改进。在预训练方面,将高质量的预训练数据集从之前的7万亿个token扩展到18万亿个token,为常识、专家知识和推理能力提供坚实的基础。在后训练方面,用超过100万个样本
- AI安全相关漏洞
外咸瓜街的一条咸鱼
AI安全人工智能安全
最近AI大模型上线,除开常规的系统漏洞外,也涌现出很多新的漏洞,这篇文章对于新的一些漏洞进行一些整理,后期进行进一步的复现。1.对抗攻击(AdversarialAttacks)攻击机制:通过在输入数据中添加人眼难以察觉的微小扰动(如噪声、像素变化),使模型产生错误分类。例如,一张熊猫图片经过对抗扰动后,被模型误判为“长臂猿”。白盒攻击:攻击者完全了解模型结构(如梯度信息),可直接计算扰动方向(如使
- 天 锐 蓝盾终端安全管理系统:办公U盘拷贝使用管控限制
Tipray2006
安全
天锐蓝盾终端安全管理系统以终端安全为基石,深度融合安全、管理与维护三大要素,通过对桌面终端系统的精准把控,助力企业用户构筑起更为安全、稳固且可靠的网络运行环境。它实现了管理的标准化,有效破解终端安全管理难题,显著提升了信息运维部门的工作效率,同时,也进一步规范了员工的操作行为,确保每一步操作都合规有序。天锐蓝盾终端安全管理系统U盘是办公中常用移动存储工具,但同时也是终端泄密的途径之一,对其进行管控
- 自动驾驶之BEV概述
maxruan
BEV自动驾驶自动驾驶人工智能机器学习BEV
1、为什么需要BEV?自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。所以无论如何3D结果才是我们最终想要的。对于单个传感器:通过单目3D、深度估计等手段好像能解决这个问题,但是往往精度不高。对于自动驾驶,往往需要360度的多个摄像头协同工作。将多个摄像头的结果进行融合也是一大问题。所以把图象特征转到BEV空间下直接进行3D位置预测,一则可以解决2D到3D的
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- DeepSeek的开源之路:一文读懂从V1-R1的技术发展,见证从开源新秀到推理革命的领跑者
算法
作者:京东科技蔡欣彤一、引言:AI时代的挑战与DeepSeek的崛起在大模型时代,AI技术的飞速发展带来了前所未有的机遇,但也伴随着巨大的挑战。随着模型规模的不断扩大,算力需求呈指数级增长,训练成本飙升,而性能提升的边际收益却逐渐递减,形成了所谓的“ScalingLaw”瓶颈。与此同时,OpenAI、谷歌等巨头通过闭源策略垄断技术,限制了中小企业和研究机构的参与空间。在这样的背景下,DeepSee
- MySQL底层是如何实现事物的四大特性的?
MySQL如何实现事务的四大特性(ACID)MySQL的事务支持主要通过InnoDB存储引擎实现,其底层机制结合日志系统(UndoLog/RedoLog)、锁机制和多版本并发控制(MVCC),具体实现如下:1.原子性(Atomicity)定义:事务的所有操作要么全部成功,要么全部失败回滚。实现:UndoLog(回滚日志):在事务修改数据前,UndoLog会记录数据修改前的状态(旧版本数据)。若事务
- 【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)
小哈里
#数据开发语言模型人工智能自然语言处理LLMdeepseek大模型
【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)文章目录1、本地部署LLM(以Ollama为例)2、本地LLM交互界面(以OpenWebUI为例)3、本地部署硬件要求对应表1、本地部署LLM(以Ollama为例)本地部署LLM的框架129k-Ollama1是一个提供简单命令行接口的工具,可以轻松下载和运行本
- msf php脚本提权,利用Metasploit提权Linux主机思路
weixin_39640904
msfphp脚本提权
本帖最后由小爱_Joker于2017-3-913:28编辑大晚上的写个文章不容易而且有点小冷利用metasploit提权Linux主机主要就是用msf生成一个马子上传到webshell打开马子后你就会发现你的msf已经建立了一个回话下面进入正题PHPMeterpretermetasploit有一个名为PHPMeterpreter的payload,可创建具有meterpreter功能的PHPwebs
- 荔枝混合云网络实践:技术创新与未来展望
ITPUB-微风
数字化
在数字化转型的浪潮中,荔枝集团作为中国在线音频的领军企业,于2020年1月17日成功登陆纳斯达克交易所,成为行业内的先锋。在云计算领域,荔枝集团通过其运维总监熊振的领导,专注于IaaS建设、SDN和全球化混合云网络架构设计,展现了其在技术创新上的深厚实力。本文将深入探讨混合云的发展趋势、管理中的痛点和挑战,以及荔枝混合云iRock的介绍和实现。一、混合云管理的痛点和挑战随着企业对云计算需求的增长,
- 新员工培训/转正考试 网络安全 质量意识 应知应会
Haydroid
网络安全
新员工培训/转正考试以下都是最新题库,都是考试过验证过的答案,有些答案正确却被扣分,错误答案却能得分,呵呵……世界真的很奇妙!我已经趟过雷了,呕心沥血整理考过的题目提供给大家,保证每题都能得分。本文包含网络安全、应知应会、质量意识三大块,如下:新员工网络安全单选题多选题判断题员工应知应会单选题多选题判断题新员工质量意识单选题多选题判断题本文仅供学习交流,以下是题目及正确答案,祝你顺利通过考试!(如
- flash_attn安装出现的错误及本地安装package
flow_code
人工智能深度学习经验分享
前言flash_attn安装包是在大模型的建立过程中是一个非常重要的package,但是直接使用命令行安装会出现报错。1.报错直接安装:pipinstallflash_attn错误:Buildingwheelsforcollectedpackages:flash_attnBuildingwheelforflash_attn(setup.py)…errorerror:subprocess-exite
- 物联网+人工智能:发那科、思科、罗克韦尔自动化联合推出FIELD system
weixin_33962621
人工智能嵌入式
2016年11月2日,工博会,发那科与全球科技领导厂商思科、全球最大的专注于工业自动化与信息化公司罗克韦尔自动化,共同为FIELDsystem进行中国区的合作发布,实现工厂中设备的智能互联,推动智能制造的发展。发那科株式会社会长稻叶善治、发那科株式会社社长山口贤治、发那科株式会社董事、专务执行役员兼机器人事业本部本部长稻叶清典、上海发那科机器人有限公司总经理钱晖、思科系统(中国)网络技术有限公司副
- 大模型是如何蒸馏像Qwen-7B,Llama-3 这种小模型的?
闫哥大数据
大模型llama人工智能
1.Qwen-7B和Llama-3的所属公司Qwen-7B:属于阿里巴巴,是“通义千问”系列的开源模型,由阿里云团队研发。Llama-3:属于Meta(原Facebook),是Meta开源的Llama系列大语言模型的最新版本。2.蒸馏数据的使用与模型归属蒸馏技术的作用:DeepSeek将自研大模型(如DeepSeek-R1)生成的80万条高质量解题数据(称为“蒸馏数据”)用于训练Qwen、Llam
- DeepSeek动态增量学习技术详解与实战指南
燃灯工作室
Deepseek人工智能机器学习数据挖掘
一、主题背景1.Why:破解模型持续进化难题传统全量训练模式面临三大困境:金融风控场景中,每周新增百万级欺诈样本时,全量训练耗时从3小时增至8小时(数据量年增长300%)医疗影像诊断模型遇到新病症类型时,需要重新标注全部历史数据智能客服系统无法保留上周学习的行业专有术语DeepSeek方案实现:训练耗时:新增数据量20%时,耗时仅增加35%(传统方法需100%)灾难性遗忘率:在CLVision20
- Python进阶:详解`**kwargs`的底层原理与实战技巧,5大常见错误及解决方案
燃灯工作室
Pythonpython服务器linux
正文内容一、核心概念剖析定义:**kwargs是Python中用于接收任意数量关键字参数的特殊语法,将参数收集到字典对象中核心目的:增强函数参数处理的灵活性支持动态参数传递实现优雅的API设计基本语法:deffunction_name(**kwargs):#函数体二、语法规则详解1.标准使用范式defprocess_data(name,age=25,**info):print(f"Name:{na
- AI大模型时代,新手和程序员如何转型入局AI行业?
大模型RAG实战
人工智能aiagi程序员转行
在人工智能(AI)的浪潮中,大模型技术正以前所未有的速度发展,并在各个领域展现出其强大的应用潜力。在近期的全国两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。技术革命正在从“互联网+”向“人工智能+”逐步迈进,我们将迎来新一轮技术革新和人才需求的增长。毫无疑问,AI工程师将是未来最紧俏的岗位。对于想要进入AI领域的新手或转
- DeepSeek技术系列之解析DeepSeek蒸馏技术
小叔技研社
AIGC人工智能
大模型落地之痛当前千亿级大模型面临严峻的部署困境:GPT-4级模型的单次推理成本高达0.01美元,而工业场景往往要求响应速度<200ms。传统蒸馏技术虽能压缩模型,但普遍存在精度滑坡超过15%的问题——直到DeepSeek提出多模态渐进框架MPD,一、什么是蒸馏技术蒸馏技术定义模型蒸馏(KnowledgeDistillation)是一种将大型复杂模型(教师模型,比如:DeepSeekR1671B
- 深入探索 llama-cpp-python:在 LangChain 中启用本地 LLM 推理
aehrutktrjk
llamapythonlangchain
引言在人工智能的迅猛发展中,大语言模型(LLM)扮演着不可或缺的角色。Llama.cpp是一个用于推理许多LLM模型的开源库,它的Python绑定——llama-cpp-python提供了在Python中更加便捷的接口。这篇文章旨在介绍如何在LangChain中运行llama-cpp-python,并探讨其安装和使用中的一些细节。主要内容1.安装llama-cpp-python首先,我们需要选择合
- GLake:优化GPU内存管理与IO传输的开源项目
2401_87458718
开源
GLake:突破GPU内存和IO瓶颈的利器在人工智能快速发展的今天,大模型训练和推理正面临着严峻的挑战。随着模型规模的不断扩大,GPU内存容量和IO带宽的增长速度已经远远跟不上AI模型规模的增长速度,形成了所谓的"内存墙"和"IO传输墙"。为了应对这些挑战,一个名为GLake的开源项目应运而生,旨在通过底层优化来突破GPU内存和IO传输的瓶颈。GLake简介GLake是一个专注于优化GPU内存管理
- Python 爬虫实战案例 - 获取BOSS直聘网招聘职位信息
西攻城狮北
python爬虫BOSS直聘招聘信息
引言在当今竞争激烈的职场环境中,无论是求职者渴望找到理想工作,还是企业力求招揽优秀人才,精准、及时的招聘信息都至关重要。BOSS直聘作为国内知名的在线招聘平台,汇聚了海量的职位资源,涵盖各行各业、各个层级。对于求职者,这里宛如一座蕴藏无限机会的宝库,能助其快速锚定契合自身发展的岗位;对于企业,它则是发现千里马的优质猎场,可精准匹配所需人才。而Python爬虫技术恰似一把神奇钥匙,能开启这座宝库的大
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- CF 58A.Chat room(Java实现)
Dr_Si
java算法开发语言
问题分析输入一个字符串,判断这个字符串是否能按序组成“hello”。思路分析题目说的意思是任意删除字母,能否组成"hello",实际就是判断'h'、'e'、'l'、'o'的下标是否一个比一个大,同时看'e'和'o'之间是否有两个'l'。这里我使用了indexof函数,判断'h'的首次出现位置,确认有‘h’时就使用substring函数删掉前面的所有字符,再判断‘e’的位置,同理删除前面的所有字符,
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi