- [论文笔记] LLaMA3.1与Qwen2与Apple 技术报告中预训练方案对比
心心喵
论文笔记论文阅读深度学习人工智能
https://arxiv.org/pdf/2407.21075https://arxiv.org/pdf/2407.10671https://arxiv.org/pdf/2407.21783LLaMA3.1LLaMA3.1技术报告:https://ai.meta.com/blog/meta-llama-3-1/
- WebGPT: 基于浏览器辅助的问答系统,结合人类反馈优化答案质量
土豆.exe
人工智能AI人工智能算法机器学习
【摘要】本论文介绍了WebGPT,这是一种通过浏览器辅助问答系统来使用人类反馈进行训练和优化的模型。具体来说,该系统通过与基于文本的网络浏览环境互动,使模型能够搜索和导航网络,从而提高其回答长文本问题的能力。通过将任务设计为人类可以完成的任务,研究人员能够利用模仿学习和人类反馈来训练和优化模型。主要贡献包括:创建了一个基于文本的网络浏览环境,使得模型可以互动,从而改进了检索和合成。生成带有参考文献
- ABP框架综合示例代码及消息队列(MQ)集成教程
KX-EZ
本文还有配套的精品资源,点击获取简介:ABP框架是一个基于.NET的企业级应用程序开发框架,它集成了领域驱动设计、模块化、分层架构、依赖注入、CQRS、事件溯源等最佳实践。本教程包含所有ABP核心功能和模块的示例代码,展示如何利用ABP开发不同类型的项目,并详细讲解了ABP支持的消息队列(如RabbitMQ)的集成方法。开发者可以利用这些示例深入学习ABP的使用和扩展,从而在构建企业级应用程序时提
- Flink 实战:如何计算实时热门合约
WuJiWeb3
区块链链上数据分析flink大数据web3数据分析智能合约kafkabigdata
本文将通过使用Flink框架实现实时热门合约需求。实际业务过程中,如何判断合约是否属于热门合约,可以从以下几个方面进行分析,比如:交易数量:合约被调用的次数可以作为其热门程度的指标之一。交易金额:合约处理的资金量也是评判热门程度的重要指标。活跃用户数量:调用合约的用户数量可以反映合约的受欢迎程度。交易频率:合约的调用频率可以反映其热门程度和使用情况。但我们本次目的主要是关于学习FlinkAPI的一
- ABP框架之——数据访问基础架构
搬砖养女人
数据库mongodbjava
几乎所有的业务应用程序都要适用一种数据库基础架构,用来实现数据访问逻辑,以便从数据库读取或写入数据,我们还需要处理数据库事务,以确保数据源中的一致性。ABP框架可以与任何数据库兼容,同时它提供了EFCore和MongoDB的内置集成包。您将通过定义DbContext类、将实体映射到数据库表、实现仓储库以及在有实体时部署加载相关实体的不同方式,学习如何将EFCore与ABP框架结合使用。您还将看到如
- Android OpenGL ES 2.0(四)---纹理基础
螃蟹变异了
Android移动开发AndroidOpenGLES2.0
本文从下面链接翻译过来:AndroidLessonFour:IntroducingBasicTexturing这是我们的第四个教程。在本课中,我们将添加我们在第三课中学到的内容,并学习如何添加纹理。我们将看看如何从应用程序资源中读取图像,将此图像加载到OpenGLES中,并将其显示在屏幕。跟着我,你会立刻理解基本的纹理前提条件本系列每个课程构建都是以前一个课程为基础,这节课是第三课的扩展,因此请务
- 核函数及其常见类型
Shockang
机器学习数学通关指南机器学习人工智能数学线性代数概率统计
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文核心概念核函数(KernelFunction)是机器学习中处理非线性可分数据的关键工具。它的核心思想是隐式映射:通过将数据从原始低维空间映射到高维空间,使得在高维空间中线性可分,从而无需显式计算高维映射,仅需在低维空间高效计算
- 1.梦的开始——点灯大师
雷门大师姐
单片机嵌入式硬件51单片机
1.什么是GPIO不论学习什么单片机,最简单的外设莫过于IO口的高低电平控制,本章就是通过控制51单片机的GPIO使开发板上的LED灯点亮。GPIO(generalpurposeinputoutput)是通用输入输出端口的简称,可以通过软件来控制其输入和输出。51单片机芯片的GPIO引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。不过GPIO最简单的应用还属点亮LED灯了,只需
- 使用DeepSeek整合自有数据构建知识库教程
Logan_Gong
ai知识图谱
使用DeepSeek整合自有数据构建知识库教程在信息爆炸的时代,有效管理和利用自有数据成为提升工作与学习效率的关键。DeepSeek作为一款强大的工具,为我们整合自有数据、构建个性化知识库提供了便利。以下将详细介绍使用DeepSeek搭建专属知识库的多种方案,无论你是新手小白,还是经验丰富的开发者,亦或是企业级用户,都能找到适合自己的方法。一、快速入门方案(推荐新手)工具组合:AnythingLL
- 2024年Python最新Pytorch--3,面试高分实战
m0_60666452
程序员python学习面试
(1)Python所有方向的学习路线(新版)这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。最近我才对这些路线做了一下新的更新,知识体系更全面了。(2)Python学习视频包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门
- 【5】单调队列学习笔记
W9095
学习笔记c++算法
前言鸽了很久,2023/1/52023/1/52023/1/5开始,2023/1/212023/1/212023/1/21才完工。中途去集训了,没时间来补漏洞。单调队列单调队列是一种非常实用的数据结构,可以用于查询一个定长区间在以一定速度向后滑动,并查询区间内最值的问题(具体见例题111)。时间复杂度非常低,总体是O(n)O(n)O(n),均摊到每个元素是O(1)O(1)O(1),所以常用来优化其
- 2024年最新PyTorch深度学习项目实战100例数据集_python 深度学习项目演练
2401_84585440
程序员深度学习pythonpytorch
前言最近很多订阅了《PyTorch深度学习项目实战100例》的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,刚刚接触PyTorch的用户群体,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目,快速让新手小白能够对基于深度学习方法有个基本的框架认
- 【全网超详细】常用的 Windows CMD(命令提示符)指令合集
Wit's blog
c++pythonpyqtscrapyscikit-learndashscipy
以下整理了一份【全网超详细】常用的WindowsCMD(命令提示符)指令合集,并对其功能、常见用法及示例进行了分类与说明。希望能帮助你在日常或专业环境下快速定位和使用所需命令,提高工作与学习效率。为方便查阅,本篇会按照文件管理类、系统信息与网络类、进程与服务类、磁盘与系统维护类等主题进行梳理,每条命令配有简单示例及常见参数介绍。一、文件管理类指令1.dir功能:列出指定目录下的文件与子目录信息。常
- Lab17_ Blind SQL injection with out-of-band data exfiltration
远川_Horizon
web安全sql
文章目录前言:进入实验室构造payload前言:实验室标题为:带外数据泄露的SQL盲注简介:本实验包含一个SQL盲目注入漏洞。应用程序使用跟踪Cookie进行分析,并执行包含提交的Cookie值的SQL查询。SQL查询是异步执行的,对应用程序的响应没有影响。但是,您可以触发与外部域的带外交互。该数据库包含一个名为users的表,其中的列名为username和password。您需要利用SQL盲目注
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- C语言笔记(郝斌)
cndsdss
c语言单片机stm32开发语言笔记linux改行学it
二次复习做的笔记,很基础,适合新手入门,复习巩固C语言前言1.为什么学习c语言优点:代码量小速度快功能强大可移植性较好缺点:危险性高开发周期长应用领域广:系统软件应用软件为学习数据结构C++打基础2.怎样学C语言多思考多上机多上机多上机目标:能看懂程序,能调试程序3.学习的目标熟练掌握C语言的语法规则理解面向过程的思想4.学习重点流程控制函数指针动态内存分配1.基本编程知识1.1CPU内存条硬盘显
- 2025最新 DeepSeek学习资料汇总
啾啾859
pdf
「DeepSeek资料合集」链接:https://pan.quark.cn/s/ad280bf95fb7「清华北大-Deepseek使用手册」链接:https://pan.quark.cn/s/98782f7d61dc「清华大学Deepseek整理)1-6版本链接:https://pan.quark.cn/s/72194e32428a资源链接:https://pan.quark.cn/s/3d40
- 侯捷 C++ 课程学习笔记:C++面向对象开发
『六哥』
C++学习笔记
学习C++面向对象开发需要具备一些基础。学习过某种proceduurallanguage(C语言最佳)了解变量(variables)、类型(types)、作用域(scope)、循环(loops)、流程控制。知道一个程序需要编译才能被执行。以良好的方式编写C++class是一种基于对象(ObjectBased)classwithoutpointermembers——Complex带指针classwi
- 机器学习篇——决策树基础
巷955
机器学习算法决策树
引言:决策树是一种常见的机器学习算法,广泛应用于分类和回归任务。它通过树状结构表示决策过程,每个内部节点代表一个特征测试,每个分支代表一个可能的测试结果,而每个叶节点则代表一个类别或回归值。本文将详细介绍决策树的原理、构建过程、优缺点以及实际应用。1.决策树的基本概念1.1什么是决策树?决策树是一种监督学习算法,主要用于分类和回归任务。它通过递归地将数据集划分为更小的子集,最终生成一棵树状结构。决
- FPGA学习——verilog捕捉信号上升沿下降沿
or_to
FPGAfpga开发学习
在FPGA使用中,常常需要进行信号的边沿检测,如在串口通信中,需要检测接收信号的下降沿来判断串口的的起始位。常用的方法就是:设计两个一位的寄存器,用来接收被检测的信号,系统时钟来一次记一次输入信号,如果用了两个寄存器直接异或就可以了;使用高频的时钟对信号进行采样,因此要实现上升沿检测,时钟频率至少要在信号最高频率的2倍以上,否则就可能出现漏检测。代码如下:moduleedge_detect(sys
- 使用DeepSeek来构建LangGraph Agent
乔巴先生24
人工智能python人机交互
随着DeepseekR1的发布,我们不得不把目光聚焦在这个能赶超多个顶流大模型的模型身上,它主要是其在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAIo1正式版。为了更好的了解它的性能,我们这篇文章来尝试用它来构建Agent。安装!pipinstall-qopenailangchainlanggraph
- 当深度学习遇见禅宗:用东方智慧重新诠释DQN算法
带上一无所知的我
智能体的自我修炼:强化学习指南深度学习算法人工智能DQN
当深度学习遇见禅宗:用东方智慧重新诠释DQN算法“好的代码如同山水画,既要工笔细描,又要留白写意”——一个在终端前顿悟的开发者DQN是Q-Learning算法与深度神经网络的结合体,通过神经网络近似Q值函数,解决传统Q-Learning在高维状态空间下的"维度灾难"问题。引言:代码与禅的碰撞♂️在某个调试代码到凌晨三点的夜晚,我突然意识到:强化学习的过程,竟与佛家修行惊人地相似。智能体在环境中探索
- 无监督AI训练:机遇与挑战并存
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
无监督AI训练:机遇与挑战并存关键词:无监督学习、AI训练、机器学习、聚类算法、降维技术、深度学习摘要:本文深入探讨无监督AI训练这一新兴领域,首先介绍了其基本概念与原理,然后详细解析了无监督AI训练的核心技术,如聚类算法和降维技术,以及无监督深度学习。接着,本文通过实际项目案例分析,展示了无监督AI训练的应用实践。最后,本文分析了无监督AI训练面临的挑战,并展望了其未来发展趋势。通过本文的阅读,
- Java初级入门学习
周杰伦fans
ai学习参考JAVA后端框架java学习开发语言
JAVA学习@[TOC](JAVA学习)**一、Java初级入门学习路径****1.Java基础语法****2.面向对象编程(OOP)****3.数据库与JDBC****4.JavaWeb基础****二、主流框架推荐与学习建议****1.Spring框架****2.SpringMVC****3.MyBatis****4.SpringBoot****三、后续学习建议****1.实战项目****2.进
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 史上最全 C/C++ 指针避坑指南:8年老鸟整理的20个致命错误(建议收藏)
c++
大家好,我是小康,一个在C++的坑里摸爬滚打了8年的开发者。今天我要和大家聊聊那些让每个程序员都头疼的指针错误。写了这么久C++,指针还是经常让你头大?代码莫名其妙崩溃,调试半天发现是指针出问题?面试官随便问个指针问题就把你问懵了?放心,不是你一个人!今天我们就用最通俗的语言,聊聊C++指针那些"坑"。记得我刚开始学习的时候,光是看到int*p这样的代码就觉得脑袋瓜子嗡嗡的。但是,指针这个东西吧,
- 史上最全 C/C++ 指针避坑指南:8年老鸟整理的20个致命错误(建议收藏)
c++
大家好,我是小康,一个在C++的坑里摸爬滚打了8年的开发者。今天我要和大家聊聊那些让每个程序员都头疼的指针错误。写了这么久C++,指针还是经常让你头大?代码莫名其妙崩溃,调试半天发现是指针出问题?面试官随便问个指针问题就把你问懵了?放心,不是你一个人!今天我们就用最通俗的语言,聊聊C++指针那些"坑"。记得我刚开始学习的时候,光是看到int*p这样的代码就觉得脑袋瓜子嗡嗡的。但是,指针这个东西吧,
- 微服务设计模式--概述(笔记)
微服务设计模式
模式分为三组:基础设施相关模式:基础设施相关;应用基础设施相关:应用层面基础设施;应用相关模式组;各模式分解服务拆分模式根据业务能力分解模式根据子域分解模式通信相关通信风格服务发现可靠性事务性消息外部API数据一致性解决分布式日志,以及数据一致性;查询数据解决多个服务数据源获取数据;CQRS:命令查询职责隔离服务部署解决微服务如何部署;可食用虚拟机,容器,serverless技术;可观测性理解和诊
- FPGA学习篇——Verilog学习4(常见语句)
ooo-p
Verilog学习fpga开发学习
1.1结构语句结构语句主要是initial语句和always语句,initial语句它在模块中只执行一次,而always语句则不断重复执行,以下是一个比较好解释的图:(图片来源于知乎博主罗成,画的很好很直观!)1.1.1initial语句initial语句它在模块中只执行一次。它常用于测试文件的编写,用来产生仿真测试信号(激励信号),或者用于对存储器变量赋初值。语法格式:initialbegin.
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置