在学习李沐:动手学深度学习第13章中,原教材代码如下:
import numpy as np
import os
import matplotlib.pyplot as plt
import torch
from d2l import torch as d2l
print(os.getcwd())
d2l.set_figsize()
img = d2l.plt.imread('./img/OIP-C.jpg')
d2l.plt.imshow(img)
plt.show()
def box_corner_to_center(boxes):
"""从(左上,右下)转换到(中间,宽度,高度)"""
x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1
h = y2 - y1
boxes = torch.stack((cx, cy, w, h), axis=-1)
# stack在维度上连接(concatenate)若干个张量,-i为倒数第i个维度
return boxes
def box_center_to_corner(boxes):
"""从(中间,宽度,高度)转换到(左上,右下)"""
cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] # 列
x1 = cx - 0.5 * w
y1 = cy - 0.5 * h
x2 = cx + 0.5 * w
y2 = cy + 0.5 * h
boxes = torch.stack((x1, y1, x2, y2), axis=-1)
return boxes
# bbox是边界框的英文缩写
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]
boxes = np.array((dog_bbox, cat_bbox))
print(box_center_to_corner(box_corner_to_center(boxes)) == boxes)
运行报以下错误:TypeError: expected Tensor as element 0 in argument 0, but got numpy.ndarray
错误原因就是需要将nparray转化成Tensor类型,在原来代码中最后一行之前加入:
boxes = torch.from_numpy(boxes)
问题解决。输出:
tensor([[True, True, True, True],
[True, True, True, True]])
小结:
1.nparray转化为Tensor
boxes = torch.from_numpy(boxes)
2.Tensor转化为nparray
x=x.numpy()