- 深度学习笔记之自然语言处理(NLP)
电棍233
深度学习笔记自然语言处理
深度学习笔记之自然语言处理(NLP)在行将开学之时,我将开始我的深度学习笔记的自然语言处理部分,这部分内容是在前面基础上开展学习的,且目前我的学习更加倾向于通识。自然语言处理部分将包含《动手学深度学习》这本书的第十四章,自然语言处理预训练和第十五章,自然语言处理应用。并且参考原书提供的jupyternotebook资源。自然语言处理,预训练自然语言处理(NaturalLanguageProcess
- react19设计AntVX6 人工智能建模 DAG 图
I like Code?
AntVX6javascript前端开发语言
HomeTop.tsximportReact,{useState,useEffect,useRef}from'react'importuseStorefrom'../../../store/state'import{Graph,Path}from'@antv/x6'import{History}from'@antv/x6-plugin-history'importAlgoNodefrom'../.
- 常用特征检测算法SURF、SIFT、ORB和FAST
super尚
图像处理算法人工智能计算机视觉
特征检测算法SURF算法特征检测的视觉不变性是一个非常重要的概念。但是要解决尺度不变性问题,难度相当大。为解决这一问题,计算机视觉界引入了尺度不变特征的概念。它的理念是,不仅在任何尺度下拍摄的物体都能检测到一致的关键点,而且每个被检测的特征点都对应一个尺度因子。理想情况下,对于两幅图像中不同尺度的的同一个物体点,计算得到的两个尺度因子之间的比率应该等于图像尺度的比率。近几年,人们提出了多种尺度不变
- 从零开始玩转TensorFlow:小明的机器学习故事 1
山海青风
#机器学习机器学习tensorflow人工智能
1.引言故事简介小明是一个计算机专业的大三学生,近期在学校里接触到了机器学习。他在某次校园活动中发现,活动主办方总是难以准确预测学生的报名人数,导致准备的物料经常不够或浪费。于是,小明萌生了一个想法:能否通过一些历史数据,用机器学习的方式来预测每场活动的参与率?在老师的建议下,他选择了TensorFlow,一个流行且强大的深度学习框架,希望能将这个想法变成现实。2.开始TensorFlow的旅程场
- 大模型产品架构全景解读:从应用场景到技术支持的完整路径
程序员丸子
架构人工智能AI大模型大模型LLM大语言模型RAG
随着人工智能技术的迅猛发展,大模型逐渐成为推动各行业智能化转型的核心动力之一。大模型不仅可以处理大量数据,进行复杂任务的自动化,还能通过微调、蒸馏等技术在特定场景中表现出色。本文将结合大模型产品架构图,详细解读每一个组成模块,帮助读者理解从应用场景到技术支持的完整路径,洞察大模型如何在实际业务中落地。一、落地场景:赋能业务的智能化解决方案大模型的实际价值首先体现在各个业务场景的落地应用中。在架构图
- 知物由学 | AI网络安全实战:生成对抗网络
Hacker_Fuchen
人工智能web安全生成对抗网络
作者:BradHarris,安全研究员,Brad曾在公共和私营部门的网络和计算机安全领域工作过。他已经完成了从渗透测试到逆向工程到应用研究的所有工作,目前他是IBMX-Force的研究员。GANs是人工智能(AI)的最新思想之一。在我们深入讨论这个话题之前,让我们先来看看“对抗性”这个词的含义。在AI的原始应用中,这个词指的是用来欺骗评估神经网络或另一个机器学习模型的样本类型。随着机器学习在安全应
- 计算机视觉之图像处理-----SIFT、SURF、FAST、ORB 特征提取算法深度解析
三年呀
计算机视觉图像处理算法深度学习python目标检测机器学习
SIFT、SURF、FAST、ORB特征提取算法深度解析前言在图像处理领域亦或是计算机视觉中,首先我们需要先理解几个名词:什么是尺度不变?在实际场景中,同一物体可能出现在不同距离(如远处的山和近处的树),导致其在图像中的尺度不同,也引出了多尺度的概念。算法检测到的特征在图像缩放(放大或缩小)后仍能被正确识别和匹配,即尺度不变性。什么是旋转不变?物体在现实中的朝向可能任意(如手机横屏/竖屏拍摄同一物
- 基于深度学习进行呼吸音检测的详细示例
go5463158465
算法深度学习深度学习人工智能
以下是一个基于深度学习进行呼吸音检测的详细示例,我们将使用Python语言以及一些常见的深度学习库(如TensorFlow、Keras)和数据处理库(如numpy、pandas),同时会用到音频处理库librosa。整个流程包括数据加载、预处理、模型构建、训练和评估。步骤1:安装必要的库在开始之前,确保你已经安装了以下库:pipinstalltensorflowlibrosanumpypandas
- 用deepseek学大模型08-用deepseek解读deepseek
wyg_031113
人工智能深度学习
DeepSeekR1是一种先进的深度学习模型架构,结合了Transformer、稀疏注意力机制和动态路由等核心技术。以下是对其核心原理、公式推导及模块分析的详细解析:深入浅析DeepSeek-V3的技术架构1.核心架构概览DeepSeekR1的架构基于改进的Transformer,主要模块包括:稀疏多头自注意力(SparseMulti-HeadSelf-Attention)动态前馈网络(Dynam
- 超越实验室:打造真正在现实世界中奏效的 AI (泛化性与鲁棒性)
海棠AI实验室
人工智能理论与学术机器学习人工智能信息可视化
人工智能正以前所未有的速度从研究实验室走向我们的日常生活。我们看到AI驱动着从语音助手到推荐引擎的各种应用,而自动驾驶汽车、个性化医疗等更具变革性的应用前景也始终令人期待。然而,要真正释放AI的潜力,我们还需要克服一个关键障碍:让AI真正在现实世界中可靠地运行,而不仅仅是在受控的实验室环境中。想象一下,一辆自动驾驶汽车在一个晴朗的下午行驶时表现完美,但当它进入一个大雾天气区域时,它却无法识别前方的
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- 避坑指南:chatgpt账号购买成品号- chatgpt 4.0 plus成品号购买手册!
chatgpt
购买ChatGPT账号的注意事项及指南✨在当前人工智能技术快速发展的背景下,ChatGPT作为一种强大的语言模型工具️,受到了广泛关注。然而,在获取ChatGPT账号的过程中,用户需审慎考虑多项关键因素,以确保所购账号的安全、可靠及合法性✅,规避潜在风险⚠️。本文将深入探讨购买ChatGPT账号时需重点关注的几个方面,并提供相关建议。1.账号来源审查️♂️账号来源是决定其安全性和可靠性的首要因素
- AI 模型的优化与应用:大模型本体、蒸馏、量化 与 GGUF
CCSBRIDGE
人工智能人工智能
引言近年来,大型语言模型(LLM)在人工智能领域取得了突破性的进展,但其计算需求高昂,训练和推理成本巨大。因此,如何优化大模型,使其在不同设备和应用场景下更高效地运行,成为了AI研究的重要课题。本文将探讨大模型本体(FullModel)、蒸馏(Distillation)、量化(Quantization)和GGUF(GPT-GeneratedUnifiedFormat)等优化技术,并分析它们的区别、
- 上下文感知 AI Agent 将赋予我们的“超能力”
塞大花
AI架构与工具学习之路人工智能aiAgent上下文感知技术发展AI发展行业发展
随着科技的进步,工具正在逐渐演化成真正意义上的“能力”,为我们的生活、工作和思维方式带来前所未有的改变。2025年,我们将从“向人们出售更强大的工具”转向“向人们出售更强大的能力”,这场变革将由上下文感知的AIAgent(人工智能代理)推动。我们即将进入一个新的时代,在这个时代里,AIAgent不仅仅是外部的工具,它们将与我们的日常生活无缝融合,赋予我们“超人”般的能力。工具与能力的区别人类历史上
- 谷歌 AI Agent 白皮书:2025 年,智能体时代已来
人工智能googleagent
谷歌在2024年底发布了AIAgent(AI智能体)白皮书,表明人工智能在商业中将扮演更积极和独立的角色的未来,并详细阐述了智能体的概念、架构、运作方式以及相关技术,为智能体的开发和应用提供了理论框架和实践指导。AI4AI社区为大家对白皮书内容进行了整理,简单概括回顾核心内容,欢迎点击文章底部“阅读原文”获取完整版白皮书。智能体时代已来人类擅长处理复杂的模式识别任务。然而,我们往往需要借助工具——
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- Java中的自然语言处理(NLP)工具:Stanford NLP、Apache OpenNLP、DL4J
花千树-010
RAGjava自然语言处理apachenlpAIGC
随着人工智能技术的快速发展,自然语言处理(NLP)已经成为各行各业中不可或缺的技术。对于Java开发者来说,选择合适的NLP工具可以极大地提升开发效率。今天,我们将探讨几款常用的JavaNLP工具:StanfordNLP、ApacheOpenNLP和DL4J,并通过代码实例展示如何使用它们。1.StanfordNLP:功能全面的NLP工具StanfordNLP是由斯坦福大学开发的自然语言处理工具包
- 【深度学习】预训练和微调概述
CS_木成河
深度学习深度学习人工智能语言模型预训练微调
预训练和微调概述1.预训练和微调的介绍1.1预训练(Pretraining)1.2微调(Fine-Tuning)2.预训练和微调的区别预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个预训练-微调(Pretrain-Finetune)流程的不同阶段。两者相辅相成,共同帮助模型从通用的知识到特定任务的适应。1.预训练和微调的介绍1.1预训练(Pretraining)定义:预训练是指在
- 【深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习】
生活De°咸鱼
AIGCJava深度学习大数据AIGC
深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习1.深度学习基础概述1.1深度学习的核心概念1.2常见深度学习模型1.3大模型的挑战与解决方案2.数据准备2.1数据处理示例:CIFAR-103.构建深度学习模型4.训练模型5.使用预训练模型(迁移学习)6.Transformer架构6.1Transformer的核心原理6.2Transformer的基本组件6.3Trans
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 清华独家教程 | 零基础玩转DeepSeek:AI时代的实战赋能手册
阿黎逸阳
学习python人工智能人工智能
在人工智能技术加速渗透各行各业的今天,清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队推出《DeepSeek从入门到精通》,为公众提供了一份权威、实用的AI工具使用指南。这份104页的文档不仅是技术手册,更是人工智能时代的效率革命指南,帮助用户从基础操作到高阶应用全面掌握DeepSeek这一通用人工智能(AGI)工具。当人人都会用AI时,你如何用得更好更出彩?一起来看看吧。
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- 基于深度学习的焊缝缺陷检测识别系统:YOLOv10 + UI界面 + 数据集
深度学习&目标检测实战项目
深度学习YOLOui目标跟踪分类人工智能
1.引言1.1背景介绍焊接是现代工业制造中的重要工艺之一,其质量直接影响产品的安全性、耐用性和可靠性。然而,由于焊接工艺的复杂性,在实际应用中不可避免地会出现焊缝缺陷,如气孔、裂纹、未熔合等。这些缺陷不仅降低了焊接质量,还可能导致严重的安全事故。因此,如何高效、准确地检测焊缝缺陷成为工业领域的重要研究课题。传统的焊缝缺陷检测方法主要依赖于人工经验或简单的图像处理技术。这些方法不仅效率低下,而且受主
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- .NET架构师:全网最全“权限系统”设计剖析
数字智慧化基地
.NET/C#中大型项目开发.net.netcore微服务架构系统架构
作者:科技、互联网行业优质创作者专注领域:.Net技术、软件架构、人工智能、数字化转型、DeveloperSharp、微服务、工业互联网、智能制造欢迎关注我(Net数字智慧化基地),里面有很多高价值技术文章,是你刻苦努力也积累不到的经验,能助你快速成长。升职+涨薪!!1为什么需要权限管理日常工作中权限的问题时时刻刻伴随着我们,程序员新入职一家公司需要找人开通各种权限,比如网络连接的权限、编码下载提
- PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化(中英双语)
阿正的梦工坊
PyTorchDeepLearningpytorch人工智能python
PyTorchtorch.logsumexp详解:数学原理、应用场景与性能优化在深度学习和概率模型中,我们经常需要计算数值稳定的对数概率操作,特别是在处理softmax归一化、对数似然计算、损失函数优化等任务时,直接求和再取对数可能会导致数值溢出。torch.logsumexp正是为了解决这一问题而设计的。在本文中,我们将详细介绍:torch.logsumexp的数学原理它的实际用途为什么它比直接
- adeepSeek 使用指南与资源分享
后端
a#deepSeek使用指南与资源分享一、DeepSeek简介deepSeek是一款具有强大推理能力的人工智能模型,其在自然语言处理、逻辑推理和多模态交互等领域表现出色。随着技术的不断发展,DeepSeek已成为Ai领域的热门话题1。二、DeepSeek使用技巧**提示词的使用88提示词是与Deepseek交互的关键。根据卡兹克的分享,DeepSeek的提示词技巧在于简洁明了,避免过度复杂的指令1
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 2024年国内人工智能大模型汇总
kiiy2
人工智能ai学习
文心一言文心一言(ERNIEBot)是百度基于文心大模型技术推出的生成式对话产品,将于2023年3月完成内测并面向公众开放。该产品是百度在人工智能领域深耕十余年后,拥有产业级知识增强文心大模型ERNIE的基础上,利用跨模态、跨语言的深度语义理解与生成能力而开发的一款AI聊天机器人。它被设计用于回答用户的问题和提供信息,以帮助人们解决问题和获取知识。此外,文心一言还可以通过学习和训练,不断提高自己的
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l