批量图像增强

批量图像增强

# -*- coding: utf-8 -*-

import cv2
import numpy as np
import os.path
import copy


# 昏暗
def darker(image,percetage=0.9):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get darker
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = int(image[xj,xi,0]*percetage)
            image_copy[xj,xi,1] = int(image[xj,xi,1]*percetage)
            image_copy[xj,xi,2] = int(image[xj,xi,2]*percetage)
    return image_copy

# 亮度
def brighter(image, percetage=1.5):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get brighter
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = np.clip(int(image[xj,xi,0]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,1] = np.clip(int(image[xj,xi,1]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,2] = np.clip(int(image[xj,xi,2]*percetage),a_max=255,a_min=0)
    return image_copy

# 旋转
def rotate(image, angle, center=None, scale=1.0):
    (h, w) = image.shape[:2]
    # If no rotation center is specified, the center of the image is set as the rotation center
    if center is None:
        center = (w / 2, h / 2)
    m = cv2.getRotationMatrix2D(center, angle, scale)
    rotated = cv2.warpAffine(image, m, (w, h))
    return rotated

# 翻转
def flip(image):
    flipped_image = np.fliplr(image)
    return flipped_image
    
# 图片文件夹路径
file_dir = r'E:/Apple/test/image1/' 
for img_name in os.listdir(file_dir):
    img_path = file_dir + img_name
    img = cv2.imread(img_path)
    # cv2.imshow("1",img)
    # cv2.waitKey(5000)
    # 旋转
    rotated_90 = rotate(img, 90)
    cv2.imwrite(file_dir + img_name[0:-4] + '_r90.jpg', rotated_90)
    rotated_180 = rotate(img, 180)
    cv2.imwrite(file_dir + img_name[0:-4] + '_r180.jpg', rotated_180)

for img_name in os.listdir(file_dir):
    img_path = file_dir + img_name
    img = cv2.imread(img_path)
    # 镜像
    flipped_img = flip(img)
    cv2.imwrite(file_dir +img_name[0:-4] + '_fli.jpg', flipped_img)

    #变亮、变暗
    img_darker = darker(img)
    cv2.imwrite(file_dir + img_name[0:-4] + '_darker.jpg', img_darker)
    img_brighter = brighter(img)
    cv2.imwrite(file_dir + img_name[0:-4] + '_brighter.jpg', img_brighter)

    blur = cv2.GaussianBlur(img, (7, 7), 1.5)
    #      cv2.GaussianBlur(图像,卷积核,标准差)
    cv2.imwrite(file_dir + img_name[0:-4] + '_blur.jpg',blur)

你可能感兴趣的:(opencv,计算机视觉,python)