Fork/Join 框架是 Java7 提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。
Fork 就是把一个大任务切分为若干子任务并行的执行,Join 就是合并这些子任务的执行结果,最后得到这个大任务的结果。比如计算1+2+…+10000,可以分割成 10 个子任务,每个子任务分别对 1000 个数进行求和,最终汇总这 10 个子任务的结果。如下图所示:
工作窃取算法
工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。
我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务
线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。
ForkJoinTask:我们要使用 ForkJoin 框架,必须首先创建一个 ForkJoin 任务。它提供在任务中执行 fork() 和 join() 操作的机制,通常情况下我们不需要直接继承ForkJoinTask 类,而只需要继承它的子类,Fork/Join 框架提供了以下两个子类:
RecursiveAction:用于没有返回结果的任务。(比如写数据到磁盘,然后就退出了。 一个RecursiveAction可以把自己的工作分割成更小的几块, 这样它们可以由独立的线程或者CPU执行。
我们可以通过继承来实现一个RecursiveAction)
RecursiveTask :用于有返回结果的任务。(可以将自己的工作分割为若干更小任务,并将这些子任务的执行合并到一个集体结果。 可以有几个水平的分割和合并)
CountedCompleter: 在任务完成执行后会触发执行一个自定义的钩子函数
ForkJoinPool :ForkJoinTask 需要通过 ForkJoinPool 来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。
使用场景示例:
定义fork/join任务,如下示例,随机生成2000w条数据在数组当中,然后求和
/**
* RecursiveTask 并行计算,同步有返回值
* ForkJoin框架处理的任务基本都能使用递归处理,比如求斐波那契数列等,但递归算法的缺陷是:
* 一只会只用单线程处理,
* 二是递归次数过多时会导致堆栈溢出;
* ForkJoin解决了这两个问题,使用多线程并发处理,充分利用计算资源来提高效率,同时避免堆栈溢
出发生。
* 当然像求斐波那契数列这种小问题直接使用线性算法搞定可能更简单,实际应用中完全没必要使用
ForkJoin框架,
* 所以ForkJoin是核弹,是用来对付大家伙的,比如超大数组排序。
* 最佳应用场景:多核、多内存、可以分割计算再合并的计算密集型任务
*/
class LongSum extends RecursiveTask<Long> {
//任务拆分的最小阀值
static final int SEQUENTIAL_THRESHOLD = 1000;
static final long NPS = (1000L * 1000 * 1000);
static final boolean extraWork = true; // change to add more
than just a sum
int low;
int high;
int[] array;
LongSum(int[] arr, int lo, int hi) {
array = arr;
low = lo;
high = hi;
}
/**
* fork()方法:将任务放入队列并安排异步执行,一个任务应该只调用一次fork()函数,除非已经执行
完毕并重新初始化。
* tryUnfork()方法:尝试把任务从队列中拿出单独处理,但不一定成功。
* join()方法:等待计算完成并返回计算结果。
* isCompletedAbnormally()方法:用于判断任务计算是否发生异常。
*/
protected Long compute() {
//任务被拆分到足够小时,则开始求和
if (high low <= SEQUENTIAL_THRESHOLD) {
long sum = 0;
for (int i = low; i < high; ++i) {
sum += array[i];
}
return sum;
} else {//如果任务任然过大,则继续拆分任务,本质就是递归拆分
int mid = low + (high low) / 2;
LongSum left = new LongSum(array, low, mid);
LongSum right = new LongSum(array, mid, high);
left.fork();
right.fork();
long rightAns = right.join();
long leftAns = left.join();
return leftAns + rightAns;
}
}
}
#执行fork/join任务
public class LongSumMain {
//获取逻辑处理器数量
static final int NCPU =
Runtime.getRuntime().availableProcessors();
/** for time conversion */
static final long NPS = (1000L * 1000 * 1000);
static long calcSum;
static final boolean reportSteals = true;
public static void main(String[] args) throws Exception {
int[] array = Utils.buildRandomIntArray(20000000);
System.out.println("cpunum:"+NCPU);
//单线程下计算数组数据总和
calcSum = seqSum(array);
System.out.println("seq sum=" + calcSum);
//采用fork/join方式将数组求和任务进行拆分执行,最后合并结果
LongSum ls = new LongSum(array, 0, array.length);
ForkJoinPool fjp = new ForkJoinPool(4); //使用的线程数
ForkJoinTask<Long> result = fjp.submit(ls);
System.out.println("forkjoin sum=" + result.get());
fjp.shutdown();
}
static long seqSum(int[] array) {
long sum = 0;
for (int i = 0; i < array.length; ++i)
sum += array[i];
return sum;
}
}
1、异常处理
ForkJoinTask 在执行的时候可能会抛出异常,但是我们没办法在主线程里直接捕获异常,所以 ForkJoinTask 提供了 isCompletedAbnormally() 方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过 ForkJoinTask 的 getException 方法获取异常。示例如下
if(task.isCompletedAbnormally()){
System.out.println(task.getException());
}
getException 方法返回 Throwable 对象,如果任务被取消了则返回
CancellationException。如果任务没有完成或者没有抛出异常则返回 null。
2、ForkJoinPool构造函数
其完整构造方法如下
private ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
int mode,
String workerNamePrefix) {
this.workerNamePrefix = workerNamePrefix;
this.factory = factory;
this.ueh = handler;
this.config = (parallelism & SMASK) | mode;
long np = (long)(parallelism); // offset ctl counts
this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) &
TC_MASK);
}
重要参数解释
①parallelism:并行度( the parallelism level),默认情况下跟我们机器的cpu个数保持一致,使用Runtime.getRuntime().availableProcessors()可以得到我们机器运行时可用的CPU个数。
②factory:创建新线程的工厂( the factory for creating new threads)。默认情况下使
用ForkJoinWorkerThreadFactory defaultForkJoinWorkerThreadFactory。
③handler:线程异常情况下的处理器(Thread.UncaughtExceptionHandler
handler),该处理器在线程执行任务时由于某些无法预料到的错误而导致任务线程中断时进行一些处理,默认情况为null。
④asyncMode:这个参数要注意,在ForkJoinPool中,每一个工作线程都有一个独立的任务队列,asyncMode表示工作线程内的任务队列是采用何种方式进行调度,可以是先进先出FIFO,也可以是后进先出LIFO。如果为true,则线程池中的工作线程则使用先进先出方
式进行任务调度,默认情况下是false。
3、ForkJoinTask fork 方法fork() 做的工作只有一件事,既是把任务推入当前工作线程的工作队列里。可以参看以下的
源代码:
public final ForkJoinTask<V> fork() {
Thread t;
if ((t = Thread.currentThread()) instanceof
ForkJoinWorkerThread)
((ForkJoinWorkerThread)t).workQueue.push(this);
else
ForkJoinPool.common.externalPush(this);
return this;
}
4、ForkJoinTask join 方法
join() 的工作则复杂得多,也是 join() 可以使得线程免于被阻塞的原因——不像同名
的 Thread.join()。
public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
if (task == null)
throw new NullPointerException();
//提交到工作队列
externalPush(task);
return task;
}
ForkJoinPool 自身拥有工作队列,这些工作队列的作用是用来接收由外部线程(非 ForkJoinThread 线程)提交过来的任务,而这些工作队列被称为 submitting queue 。
submit() 和 fork() 其实没有本质区别,只是提交对象变成了 submitting queue而已(还有一些同步,初始化的操作)。submitting queue 和其他 work queue 一样,是工作线程”窃取“的对象,因此当其中的任务被一个工作线程成功窃取时,就意味着提交的任务真正开始进入执行阶段。
6、Fork/Join框架执行流