基础维纳滤波

模型

输入输出为平稳随机过程,求最优权向量使得输出估计结果的均方误差最小
d ^ ( n ) = w H u ( n ) m i n { J ( w ) { e ( n ) = d ( n ) − d ^ ( n ) J ( w ) = = E { ∣ e ( n ) ∣ 2 } \begin {align} &\hat{d}(n)=w^Hu(n) \\ &min\{J(w)\\ &\left\{\begin{aligned} &e(n)=d(n)-\hat{d}(n) \\ &J(w)==E\{|e(n)|^2\} \end{aligned} \right. \end {align} d^(n)=wHu(n)min{J(w){e(n)=d(n)d^(n)J(w)==E{e(n)2}

方法

最优权向量:
Wiener-Hopf方程:
R w o = p R = E { u ( n ) u H ( n ) } = [ r ( 0 ) r ( 1 ) ⋯ r ( M − 1 ) r ( − 1 ) r ( 0 ) ⋯ r ( M − 2 ) ⋮ ⋯ ⋱ ⋯ r ( − M + 1 ) ⋯ ⋯ r ( 0 ) ] p = E { u ( n ) d ∗ ( n ) } = [ E { u ( n ) d ∗ ( n ) } E { u ( n − 1 ) d ∗ ( n ) } ⋮ E { u ( n − M + 1 ) d ∗ ( n ) } ] = [ p ( 0 ) p ( − 1 ) ⋮ p ( − M + 1 ) ] \begin {align} &Rw_o=p\\ &R=E\{u(n)u^H(n)\}=\begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\r(-1)&r(0) & \cdots & r(M-2) \\ \vdots &\cdots &\ddots &\cdots \\ r(-M+1)&\cdots&\cdots&r(0)\end{bmatrix}\\ &p=E\{u(n)d^*(n)\}=\begin{bmatrix} E\{u(n)d^*(n)\} \\ E\{u(n-1)d^*(n)\}\\ \vdots\\ E\{u(n-M+1)d^*(n)\} \end{bmatrix} =\begin{bmatrix} p(0)\\ p(-1)\\ \vdots\\ p(-M+1) \end{bmatrix} \end {align} Rwo=pR=E{u(n)uH(n)}= r(0)r(1)r(M+1)r(1)r(0)r(M1)r(M2)r(0) p=E{u(n)d(n)}= E{u(n)d(n)}E{u(n1)d(n)}E{u(nM+1)d(n)} = p(0)p(1)p(M+1)

算法

1.最陡下降算法

(1)核心

Δ w = − 1 2 μ Δ J ( w ( n ) ) \Delta w = -\frac{1}{2}\mu\Delta J(w(n)) Δw=21μΔJ(w(n))

(2)计算

{ w ( n + 1 ) = w ( n ) + μ [ p − R w ( n ) ] 0 < μ < 2 λ m a x \begin{align} \left\{\begin{aligned} &w(n+1)=w(n)+\mu [p-Rw(n)]\\ &0<\mu<\frac{2}{\lambda_{max}} \end{aligned} \right. \end{align} w(n+1)=w(n)+μ[pRw(n)]0<μ<λmax2

(3)性能

0 < μ < 2 λ m a x 0<\mu<\frac{2}{\lambda_{max}} 0<μ<λmax2时,最陡下降算法收敛:
lim ⁡ n − > ∞ w ( n ) = w o \lim_{n->\infty} w(n)=w_o n>limw(n)=wo

2.LMS算法

(1)核心

R ^ = 1 N ∑ i = 1 N u ( i ) u H ( i ) p ^ = 1 N ∑ i = 1 N u ( i ) d ∗ ( i ) \begin{align} &\hat{R}=\frac{1}{N}\sum_{i=1}^{N}u(i)u^H(i)\\ &\hat{p}=\frac{1}{N}\sum_{i=1}^{N}u(i)d^*(i) \end{align} R^=N1i=1Nu(i)uH(i)p^=N1i=1Nu(i)d(i)

(2)计算

w ^ ( n + 1 ) = w ^ ( n ) + μ u ( n ) e ∗ ( n ) \hat{w}(n+1) = \hat{w}(n)+\mu u(n)e^*(n) w^(n+1)=w^(n)+μu(n)e(n)

(3)性能

滤波器权向量1阶收敛,但均方误差大于最小均方误差

1阶收敛

0 < μ < 2 λ m a x 0<\mu<\frac{2}{\lambda_{max}} 0<μ<λmax2时,最陡下降算法收敛:
lim ⁡ n − > ∞ E { w ^ ( n ) } = w o \lim_{n->\infty} E\{\hat{w}(n)\}=w_o n>limE{w^(n)}=wo

均方误差的稳态性能

步长因子满足
0 < μ < 2 ∑ i = 1 M λ i = 2 M r ( 0 ) 0<\mu<\frac{2}{\sum\limits_{i=1}^{M}{\lambda_i}}=\frac{2}{Mr(0)} 0<μ<i=1Mλi2=Mr(0)2

a.剩余均方误差 J e x J_{ex} Jex

J e x ( n ) = E J ^ ( n ) − J m i n J e x ( ∞ ) ≈ μ J m i n ∑ i = 1 M λ i 2 − μ ∑ i = 1 M λ i \begin{align} &J_{ex}(n) = E{\hat{J}(n)}-J_{min}\\ &J_{ex}(\infty)\approx \mu J_{min}\frac{\sum\limits^{M}_{i=1}\lambda_i}{2-\mu\sum\limits_{i=1}^{M}{\lambda_i}} \end{align} Jex(n)=EJ^(n)JminJex()μJmin2μi=1Mλii=1Mλi

b.失调参数 M M M

M = J e x ( ∞ ) J m i n M = μ ∑ i = 1 M λ i 2 − μ ∑ i = 1 M λ i ≈ μ 2 ∑ i = 1 M λ i = μ 2 M r ( 0 ) = μ 2 M λ a v = M 4 τ a v \begin{align} &M=\frac{J_{ex}(\infty)}{J_{min}}\\ &M=\frac{\mu \sum\limits^{M}_{i=1}\lambda_i}{2-\mu\sum\limits_{i=1}^{M}{\lambda_i}} \approx\frac{\mu}{2}\sum\limits_{i=1}^{M}\lambda_i=\frac{\mu}{2}Mr(0)=\frac{\mu}{2}M\lambda_{av}=\frac{M}{4\tau_{av}} \end{align} M=JminJex()M=2μi=1Mλiμi=1Mλi2μi=1Mλi=2μMr(0)=2μMλav=4τavM

c.平均时间常数 τ a v \tau_{av} τav

τ a v = 1 2 μ λ a v λ a v = 1 M ∑ i = 1 M λ i \tau_{av}=\frac{1}{2\mu\lambda_{av}} \lambda_{av}=\frac{1}{M}\sum\limits_{i=1}^{M}\lambda_i τav=2μλav1λav=M1i=1Mλi

d.特征值拓展/特征值比 χ \chi χ

χ ( R ) = λ m a x λ m i n \chi(R)=\frac{\lambda_{max}}{\lambda_{min}} χ(R)=λminλmax

你可能感兴趣的:(现代信号处理,矩阵,算法,信号处理)