为什么使用索引
索引的分类
什么时候需要/不需要创建索引
索引最大的好处是提高查询速度,但是索引也是有缺点的,比如:
所以,索引不是万能钥匙,它也是根据场景来使用的。
什么时候适用索引?
WHERE
查询条件的字段,这样能够提高整个表的查询速度,如果查询条件不是一个字段,可以建立联合索引。GROUP BY
和 ORDER BY
的字段,这样在查询的时候就不需要再去做一次排序了,因为我们都已经知道了建立索引之后在 B+Tree 中的记录都是排序好的。什么时候不需要创建索引?
WHERE
条件,GROUP BY
,ORDER BY
里用不到的字段,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的,因为索引是会占用物理空间的。优化索引的方法
前缀索引优化;
前缀索引顾名思义就是使用某个字段中字符串的前几个字符建立索引。
使用前缀索引是为了减小索引字段大小,可以增加一个索引页中存储的索引值,有效提高索引的查询速度。在一些大字符串的字段作为索引时,使用前缀索引可以帮助我们减小索引项的大小。
覆盖索引优化;
覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。
使用覆盖索引的好处就是,不需要查询出包含整行记录的所有信息,也就减少了大量的 I/O 操作。
主键索引最好是自增的;
如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。
主键字段的长度不要太大,因为主键字段长度越小,意味着二级索引的叶子节点越小(二级索引的叶子节点存放的数据是主键值),这样二级索引占用的空间也就越小。
防止索引失效;
用上了索引并不意味着查询的时候会使用到索引,所以我们心里要清楚有哪些情况会导致索引失效,从而避免写出索引失效的查询语句,否则这样的查询效率是很低的。
发生索引失效的情况:
like %xx
或者 like %xx%
这两种方式都会造成索引失效;索引使用的注意事项
MySQL 索引通常是被用于提高 WHERE 条件的数据行匹配时的搜索速度,在索引的使用过程中,存在一些使用细节和注意事项。
函数,运算,否定操作符,连接条件,多个单列索引,最左前缀原则,范围查询,不会包含有NULL值的列,like 语句不要在列上使用函数和进行运算
索引为什么使用B+树作为索引
主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。
B+tree的磁盘读写代价更低,B+tree的查询效率更加稳定 数据库索引采用B+树而不是B树的主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。
B+树的特点
索引失效有哪些
like %xx
或者 like %xx%
这两种方式都会造成索引失效;MyISAM和InnoDB实现B树索引方式的区别是什么
MyISAM,B+Tree叶节点的data域存放的是数据记录的地址,在索引检索的时候,首先按照B+Tree搜索算法搜索索引,如果指定的key存在,则取出其data域的值,然后以data域的值为地址读取相应的数据记录,这被称为“非聚簇索引”
InnoDB,其数据文件本身就是索引文件,相比MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按B+Tree组织的一个索引结构,树的节点data域保存了完整的数据记录,这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引,这被称为“聚簇索引”或者聚集索引,而其余的索引都作为辅助索引,辅助索引的data域存储相应记录主键的值而不是地址,这也是和MyISAM不同的地方。
在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。因此,在设计表的时候,不建议使用过长的字段为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。
事务的四大特性
事务的脏读、不可重复读、幻读问题
脏读:如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。
幻读:在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。
丢弃修改:两个写事务T1 T2同时对A=0进行递增操作,结果T2覆盖T1,导致最终结果是1 而不是2,事务被覆盖
不可重复读:在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。
事务的隔离级别有哪些
隔离级别 | 脏读 | 不可重复读 | 幻影读 |
---|---|---|---|
READ-UNCOMMITTED 未提交读 | √ | √ | √ |
READ-COMMITTED 提交读 | × | √ | √ |
REPEATABLE-READ 重复读 | × | × | √ |
SERIALIZABLE 可串行化读 | × | × | × |
MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)
这里需要注意的是:与 SQL 标准不同的地方在于InnoDB 存储引擎在 REPEATABLE-READ(可重读)事务隔离级别 下使用的是Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以 说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要 求,即达到了 SQL标准的SERIALIZABLE(可串行化)隔离级别。
Read View的作用
Read View 有四个重要的字段:
对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:
通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。
MySQL可重复读级别完全解决幻读了吗
对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同:
这两个隔离级别实现是通过「事务的 Read View 里的字段」和「记录中的两个隐藏列」的比对,来控制并发事务访问同一个记录时的行为,这就叫 MVCC(多版本并发控制)。
两个发生幻读场景的例子。
第一个例子:对于快照读, MVCC 并不能完全避免幻读现象。因为当事务 A 更新了一条事务 B 插入的记录,那么事务 A 前后两次查询的记录条目就不一样了,所以就发生幻读。
第二个例子:对于当前读,如果事务开启后,并没有执行当前读,而是先快照读,然后这期间如果其他事务插入了一条记录,那么事务后续使用当前读进行查询的时候,就会发现两次查询的记录条目就不一样了,所以就发生幻读。
所以,MySQL 可重复读隔离级别并没有彻底解决幻读,只是很大程度上避免了幻读现象的发生。
MySQL中为什么要有事务回滚机制
在 MySQL 中,恢复机制是通过回滚日志(undo log)实现的,所有事务进行的修改都会先记录到这个回滚日志,然后在对数据库中的对应行进行写入。 当事务已经被提交后,就无法再次回滚了。
回滚日志作用: 1)能够在发生错误或者用户执行 ROLLBACK 时提供回滚相关的信息 2) 在整个系统发生崩溃、数据库进程直接被杀死后,当用户再次启动数据库进程时,还能够立刻通过查询回滚日志将之前未完成的事务进行回滚,这也就需要回滚日志必须先于数据持久化到磁盘上,是我们需要先写日志后写数据库的主要原因。
InnoDB介绍
InnoDB是事务型数据库的首选引擎,支持事务安全表(ACID),支持行锁定和外键,InnoDB是默认的MySQL引擎。
InnoDB主要特性有:
InnoDB给MySQL提供了具有提交、回滚和崩溃恢复能力的事物安全(ACID兼容)存储引擎。
InnoDB锁定在行级并且也在SELECT语句中提供一个类似Oracle的非锁定读。这些功能增加了多用户部署和性能。在SQL查询中,可以自由地将InnoDB类型的表和其他MySQL的表类型混合起来,甚至在同一个查询中也可以混合。
InnoDB是为处理巨大数据量的最大性能设计。它的CPU效率可能是任何其他基于磁盘的关系型数据库引擎锁不能匹敌的。
InnoDB存储引擎完全与MySQL服务器整合,InnoDB存储引擎为在主内存中缓存数据和索引而维持它自己的缓冲池。InnoDB将它的表和索引在一个逻辑表空间中,表空间可以包含数个文件(或原始磁盘文件)。这与MyISAM表不同,比如在MyISAM表中每个表被存放在分离的文件中。InnoDB表可以是任何尺寸,即使在文件尺寸被限制为2GB的操作系统上。
InnoDB支持外键完整性约束,存储表中的数据时,每张表的存储都按主键顺序存放,如果没有显示在表定义时指定主键,InnoDB会为每一行生成一个6字节的ROWID,并以此作为主键。
InnoDB被用在众多需要高性能的大型数据库站点上。InnoDB不创建目录,使用InnoDB时,MySQL将在MySQL数据目录下创建一个名为ibdata1的10MB大小的自动扩展数据文件,以及两个名为 ib_logfile0 和 ib_logfile1 的5MB大小的日志文件。
MyISAM介绍
MyISAM基于ISAM存储引擎,并对其进行扩展。它是在Web、数据仓储和其他应用环境下最常使用的存储引擎之一。MyISAM拥有较高的插入、查询速度,但不支持事物。
MyISAM主要特性有:
MEMORY介绍
MEMORY存储引擎将表中的数据存储到内存中,未查询和引用其他表数据提供快速访问。
MEMORY主要特性有:
Archive介绍
archive储存引擎的应用场景就是它的名字的缩影,主要用于归档。archive储存引擎仅支持select和insert,最出众的是插入快,查询快,占用空间小。
文件系统存储特性
功能特点
数据库引擎InnoDB与MyISAM的区别
InnoDB
MyISAM
总结
Commit
和 Rollback
语句。适用场景: MyISAM适合: 插入不频繁,查询非常频繁,如果执行大量的SELECT,MyISAM是更好的选择, 没有事务。 InnoDB适合: 可靠性要求比较高,或者要求事务; 表更新和查询都相当的频繁, 大量的INSERT或UPDATE
MySQL有哪些锁(全局锁/表级锁/行级锁)
全局锁
MyISAM 只支持表锁,InnoDB 支持表锁和行锁,默认为行锁。
表级锁:开销小,加锁快,不会出现死锁。锁定粒度大,发生锁冲突的概率最高,并发量最低。
行级锁:开销大,加锁慢,会出现死锁。锁粒度小,发生锁冲突的概率小,并发度最高。
MySQL是怎么加锁的
MySQL 行级锁的加锁规则。
唯一索引等值查询:
非唯一索引等值查询:
非唯一索引和主键索引的范围查询的加锁规则不同之处在于:
MySQL记录锁+间隙锁解决幻读问题
在 MySQL 的可重复读隔离级别下,针对当前读的语句会对索引加记录锁+间隙锁,这样可以避免其他事务执行增、删、改时导致幻读的问题。
有一点要注意的是,在执行 update、delete、select … for update 等具有加锁性质的语句,一定要检查语句是否走了索引,如果是全表扫描的话,会对每一个索引加 next-key 锁,相当于把整个表锁住了,这是挺严重的问题。
死锁的四个必要条件
互斥条件:一个资源每次只能被一个进程使用;
请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放;
不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺;
循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系;
如何解决MySQL死锁问题
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
数据库悲观锁和乐观锁的原理和应用场景
悲观锁,先获取锁,再进行业务操作,一般就是利用类似 SELECT … FOR UPDATE 这样的语句,对数据加锁,避免其他事务意外修改数据。 当数据库执行SELECT … FOR UPDATE时会获取被select中的数据行的行锁,select for update获取的行锁会在当前事务结束时自动释放,因此必须在事务中使用。
乐观锁,先进行业务操作,只在最后实际更新数据时进行检查数据是否被更新过。Java 并发包中的 AtomicFieldUpdater 类似,也是利用 CAS 机制,并不会对数据加锁,而是通过对比数据的时间戳或者版本号,来实现乐观锁需要的版本判断。
MySQL的内部构造一般可以分为哪两个部分
可以分为服务层和存储引擎层两部分,其中:
服务层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认的存储引擎。
undo log、redo log、binlog有什么用
redo log是InnoDB引擎特有的,只记录该引擎中表的修改记录。binlog是MySQL的Server层实现的,会记录所有引擎对数据库的修改。
redo log是物理日志,记录的是在具体某个数据页上做了什么修改;binlog是逻辑日志,记录的是这个语句的原始逻辑。
redo log是循环写的,空间固定会用完;binlog是可以追加写入的,binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。
补充
1、redolog记录修改内容(哪一页发生了什么变化),写于事务开始前,用于数据未落磁盘,但数据库挂了后的数据恢复
2、binlog记录修改SQL,写于事务提交时,可用于读写分离
3、undolog记录修改前记录,用于回滚和多版本并发控制
什么是Buffer pool
Innodb 存储引擎设计了一个缓冲池(*Buffer Pool*),来提高数据库的读写性能。
缓存什么
InnoDB 会把存储的数据划分为若干个「页」,以页作为磁盘和内存交互的基本单位,一个页的默认大小为 16KB。因此,Buffer Pool 同样需要按「页」来划分。
在 MySQL 启动的时候,InnoDB 会为 Buffer Pool 申请一片连续的内存空间,然后按照默认的16KB
的大小划分出一个个的页, Buffer Pool 中的页就叫做缓存页。此时这些缓存页都是空闲的,之后随着程序的运行,才会有磁盘上的页被缓存到 Buffer Pool 中。
Innodb 通过三种链表来管理缓页:
InnoDB 对 LRU 做了一些优化,我们熟悉的 LRU 算法通常是将最近查询的数据放到 LRU 链表的头部,而 InnoDB 做 2 点优化:
innodb_old_blocks_time
阈值(默认为1秒)」**时,才会将页插入到 young 区域,否则还是插入到 old 区域,目的是为了解决批量数据访问,大量热数据淘汰的问题。可以通过调整 innodb_old_blocks_pct
参数,设置 young 区域和 old 区域比例。
DROP、DELETE 与 TRUNCATE 的区别
三种都可以表示删除,其中的细微区别之处如下:
DROP | DELETE | TRUNCATE | |
---|---|---|---|
SQL 语句类型 | DDL | DML | DDL |
回滚 | 不可回滚 | 可回滚 | 不可回滚 |
删除内容 | 从数据库中 删除表,所有的数据行,索引和权限也会被删除 | 表结构还在,删除表的 全部或者一部分数据行 | 表结构还在,删除表中的 所有数据 |
删除速度 | 删除速度最快 | 删除速度慢,需要逐行删除 | 删除速度快 |
因此,在不再需要一张表的时候,采用 DROP;在想删除部分数据行时候,用 DELETE;在保留表而删除所有数据的时候用 TRUNCATE。
SQL语法中内连接、自连接、外连接(左、右、全)、交叉连接的区别分别是什么
内连接:只有两个元素表相匹配的才能在结果集中显示。
外连接:
左外连接: 左边为驱动表,驱动表的数据全部显示,匹配表的不匹配的不会显示。
右外连接:右边为驱动表,驱动表的数据全部显示,匹配表的不匹配的不会显示。
全外连接:连接的表中不匹配的数据全部会显示出来。
MySQL中CHAR和VARCHAR的区别有哪些
数据库中的主键、超键、候选键、外键是什么
主键为候选键的子集,候选键为超键的子集,而外键的确定是相对于主键的。
MySQL优化
SQL语句执行流程
Server层按顺序执行sql的步骤为:
简单概括:
数据库三范式是什么
对MVCC的了解
数据库并发场景:
多版本并发控制(MVCC)是一种用来解决读-写冲突的无锁并发控制,也就是为事务分配单向增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照。
MVCC 可以为数据库解决以下问题:
主从复制中涉及到哪三个线程?
主要涉及三个线程:binlog 线程、I/O 线程和 SQL 线程。
数据库如何保证持久性
主要是利用Innodb的redo log。重写日志, 正如之前说的,MySQL是先把磁盘上的数据加载到内存中,在内存中对数据进行修改,再写回到磁盘上。如果此时突然宕机,内存中的数据就会丢失。 怎么解决这个问题? 简单啊,事务提交前直接把数据写入磁盘就行啊。 这么做有什么问题?
于是,决定采用redo log解决上面的问题。当做数据修改的时候,不仅在内存中操作,还会在redo log中记录这次操作。当事务提交的时候,会将redo log日志进行刷盘(redo log一部分在内存中,一部分在磁盘上)。当数据库宕机重启的时候,会将redo log中的内容恢复到数据库中,再根据undo log和binlog内容决定回滚数据还是提交数据。
采用redo log的好处?
其实好处就是将redo log进行刷盘比对数据页刷盘效率高,具体表现如下:
数据库如何保证原子性
主要是利用 Innodb 的undo log。 undo log名为回滚日志,是实现原子性的关键,当事务回滚时能够撤销所有已经成功执行的 SQL语句,他需要记录你要回滚的相应日志信息。 例如
undo log记录了这些回滚需要的信息,当事务执行失败或调用了rollback,导致事务需要回滚,便可以利用undo log中的信息将数据回滚到修改之前的样子。
数据库如何保证一致性
数据库高并发的解决方案
数据库结构优化的手段
关系型和非关系型数据库的区别
非关系型数据库也叫NOSQL,采用键值对的形式进行存储。
它的读写性能很高,易于扩展,可分为内存性数据库以及文档型数据库,比如 Redis,Mongodb,HBase等等。
合使用非关系型数据库的场景:
数据库为什么要进行分库和分表
分库与分表的目的在于,减小数据库的单库单表负担,提高查询性能,缩短查询时间。
通过分表,可以减少数据库的单表负担,将压力分散到不同的表上,同时因为不同的表上的数据量少了,起到提高查询性能,缩短查询时间的作用,此外,可以很大的缓解表锁的问题。 分表策略可以归纳为垂直拆分和水平拆分: 水平分表:取模分表就属于随机分表,而时间维度分表则属于连续分表。 如何设计好垂直拆分,我的建议:将不常用的字段单独拆分到另外一张扩展表. 将大文本的字段单独拆分到另外一张扩展表, 将不经常修改的字段放在同一张表中,将经常改变的字段放在另一张表中。 对于海量用户场景,可以考虑取模分表,数据相对比较均匀,不容易出现热点和并发访问的瓶颈。
库内分表,仅仅是解决了单表数据过大的问题,但并没有把单表的数据分散到不同的物理机上,因此并不能减轻 MySQL 服务器的压力,仍然存在同一个物理机上的资源竞争和瓶颈,包括 CPU、内存、磁盘 IO、网络带宽等。
分库与分表带来的分布式困境与应对之策 数据迁移与扩容问题----一般做法是通过程序先读出数据,然后按照指定的分表策略再将数据写入到各个分表中。 分页与排序问题----需要在不同的分表中将数据进行排序并返回,并将不同分表返回的结果集进行汇总和再次排序,最后再返回给用户。