笔记:Attention U-Net:Learning Where to Look for the Pancreas

原文:https://arxiv.org/pdf/1804.03999.pdf

引用:https://bbs.cvmart.net/articles/3258

提出了一种新的attention gate(AG)模型的医学成像自动学习聚焦在不同形状和大小的目标结构。经过AGs训练的模型隐式学习抑制输入图像中的无关区域,同时突出对特定任务有用的显著特征
这使我们能够消除使用级联卷积神经网络(CNNs)的显式外部组织/器官定位模块的必要性。
AGs可以很容易地集成到标准的CNN架构中,如U-Net模型,以最小的计算开销,同时提高模型的灵敏度和预测精度。
提出的Attention U-Net架构在两个大型CT腹部数据集上进行了评价,用于多类图像分割。
实验结果表明,AGs在保持计算效率的同时,不断提高U-Net在不同数据集和训练规模上的预测性能。

笔记:Attention U-Net:Learning Where to Look for the Pancreas_第1张图片
在本文中,我们在一个标准的U-Net架构之上建立了我们的注意力模型。
U-Nets由于其良好的性能和对GPU内存的有效利用而被广泛用于图像分割任务。
后者的优势主要与图像多尺度特征提取有关。
粗糙的特征地图捕获上下文信息,并突出前景对象的类别和位置。
多尺度提取的特征图通过跳跃连接进行合并,将粗层次和细层次的密集预测结合起来,如图1所示。

把来自前一个block的输入称为g,以及来自扩展路径的skip链接称为x。下面的式子描述了这个模块是如何工作的。

 笔记:Attention U-Net:Learning Where to Look for the Pancreas_第2张图片

 upsample块非常简单,而ConvBlock只是由两个(convolution + batch norm + ReLU)块组成的序列。唯一需要解释的是注意力。

笔记:Attention U-Net:Learning Where to Look for the Pancreas_第3张图片

  • _x_和_g_都被送入到1x1卷积中,将它们变为相同数量的通道数,而不改变大小
  • 在上采样操作后(有相同的大小),他们被累加并通过ReLU
  • 通过另一个1x1的卷积和一个sigmoid,得到一个0到1的重要性分数,分配给特征图的每个部分
  • 然后用这个注意力图乘以skip输入,产生这个注意力块的最终输出

在UNet中,可将收缩路径视为编码器,而将扩展路径视为解码器。UNet的有趣之处在于,跳跃连接允许在解码器期间直接使用由编码器提取的特征。这样,在“重建”图像的掩模时,网络就学会了使用这些特征,因为收缩路径的特征与扩展路径的特征是连接在一起的。在此连接之前应用一个注意力块,可以让网络对跳转连接相关的特征施加更多的权重。它允许直接连接专注于输入的特定部分,而不是输入每个特征。将注意力分布乘上跳转连接特征图,只保留重要的部分。这种注意力分布是从所谓的query(输入)和value(跳跃连接)中提取出来的。注意力操作允许有选择地选择包含在值中的信息。此选择基于query。总结:输入和跳跃连接用于决定要关注跳跃连接的哪些部分。然后,我们使用skip连接的这个子集,以及标准展开路径中的输入。

class Attention_block(nn.Module):
    """
    Attention Block
    """

    def __init__(self, F_g, F_l, F_int):
        super(Attention_block, self).__init__()

        self.W_g = nn.Sequential(
            nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm2d(F_int)
        )

        self.W_x = nn.Sequential(
            nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm2d(F_int)
        )

        self.psi = nn.Sequential(
            nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm2d(1),
            nn.Sigmoid()
        )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, g, x):
        g1 = self.W_g(g)
        x1 = self.W_x(x)
        psi = self.relu(g1 + x1)
        psi = self.psi(psi)
        out = x * psi
        return out

class AttU_Net(nn.Module):
    """
    Attention Unet implementation
    Paper: https://arxiv.org/abs/1804.03999
    """
    def __init__(self, img_ch=3, output_ch=1):
        super(AttU_Net, self).__init__()

        n1 = 64
        filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]

        self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.Conv1 = conv_block(img_ch, filters[0])
        self.Conv2 = conv_block(filters[0], filters[1])
        self.Conv3 = conv_block(filters[1], filters[2])
        self.Conv4 = conv_block(filters[2], filters[3])
        self.Conv5 = conv_block(filters[3], filters[4])

        self.Up5 = up_conv(filters[4], filters[3])
        self.Att5 = Attention_block(F_g=filters[3], F_l=filters[3], F_int=filters[2])
        self.Up_conv5 = conv_block(filters[4], filters[3])

        self.Up4 = up_conv(filters[3], filters[2])
        self.Att4 = Attention_block(F_g=filters[2], F_l=filters[2], F_int=filters[1])
        self.Up_conv4 = conv_block(filters[3], filters[2])

        self.Up3 = up_conv(filters[2], filters[1])
        self.Att3 = Attention_block(F_g=filters[1], F_l=filters[1], F_int=filters[0])
        self.Up_conv3 = conv_block(filters[2], filters[1])

        self.Up2 = up_conv(filters[1], filters[0])
        self.Att2 = Attention_block(F_g=filters[0], F_l=filters[0], F_int=32)
        self.Up_conv2 = conv_block(filters[1], filters[0])

        self.Conv = nn.Conv2d(filters[0], output_ch, kernel_size=1, stride=1, padding=0)

        #self.active = torch.nn.Sigmoid()


    def forward(self, x):

        e1 = self.Conv1(x)

        e2 = self.Maxpool1(e1)
        e2 = self.Conv2(e2)

        e3 = self.Maxpool2(e2)
        e3 = self.Conv3(e3)

        e4 = self.Maxpool3(e3)
        e4 = self.Conv4(e4)

        e5 = self.Maxpool4(e4)
        e5 = self.Conv5(e5)

        #print(x5.shape)
        d5 = self.Up5(e5)
        #print(d5.shape)
        x4 = self.Att5(g=d5, x=e4)
        d5 = torch.cat((x4, d5), dim=1)
        d5 = self.Up_conv5(d5)

        d4 = self.Up4(d5)
        x3 = self.Att4(g=d4, x=e3)
        d4 = torch.cat((x3, d4), dim=1)
        d4 = self.Up_conv4(d4)

        d3 = self.Up3(d4)
        x2 = self.Att3(g=d3, x=e2)
        d3 = torch.cat((x2, d3), dim=1)
        d3 = self.Up_conv3(d3)

        d2 = self.Up2(d3)
        x1 = self.Att2(g=d2, x=e1)
        d2 = torch.cat((x1, d2), dim=1)
        d2 = self.Up_conv2(d2)

        out = self.Conv(d2)

      #  out = self.active(out)

        return out

你可能感兴趣的:(深度学习资料,注意力机制,python)