typing模块和collections模块

目录

❤  typing模块

引言

typing模块的作用

使用typing模块

typing常用类型

❤  collections模块

namedtuple

deque

defaultdict

OrderedDict

Counter

总结


python从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129328397?spm=1001.2014.3001.5502

❤  typing模块

引言

  • 前言:很多人在写完代码一段时间后回过头看代码,很可能忘记了自己写的函数需要传什么参数,返回什么类型的结果,就不得不去阅读代码的具体内容,降低了阅读的速度,加上Python本身就是一门弱类型的语言,这种现象就变得更加的严重,而typing这个模块很好的解决了这个问题。
    系列文章

typing模块的作用

  • 类型检查,防止运行时出现参数和返回值类型不符合。

  • 作为开发文档附加说明,方便使用者调用时传入和返回参数类型。

  • 该模块加入后并不会影响程序的运行,不会报正式的错误,只有提醒。

注意:typing模块只有在python3.5以上的版本中才可以使用,pycharm目前支持typing检查

使用typing模块

from typing import List, Tuple, Dict


def add(a: int, string: str, f: float,
        b: bool) -> Tuple[List, Tuple, Dict, bool]:
    list1 = list(range(a))
    tup = (string, string, string)
    d = {"a": f}
    bl = b
    return list1, tup, d, bl


print(add(5, "hhhh", 2.3, False))

([0, 1, 2, 3, 4], ('hhhh', 'hhhh', 'hhhh'), {'a': 2.3}, False)

  • 在传入参数时通过"参数名:类型"的形式声明参数的类型;

  • 返回结果通过"-> 结果类型"的形式声明结果的类型。

  • 在调用的时候如果参数的类型不正确pycharm会有提醒,但不会影响程序的运行。

  • 对于如list列表等,还可以规定得更加具体一些,如:"-> List[str]”,规定返回的是列表,并且元素是字符串。

from typing import List


def func(a: int, string: str) -> List[int or str]:  # 使用or关键字表示多种类型
    list1 = []
    list1.append(a)
    list1.append(string)
    return list1

typing常用类型

  • int、long、float: 整型、长整形、浮点型

  • bool、str: 布尔型、字符串类型

  • List、 Tuple、 Dict、 Set:列表、元组、字典、集合

  • Iterable、Iterator:可迭代类型、迭代器类型

  • Generator:生成器类型

❤  collections模块

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1,2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

定义一个class又小题大做了,这时,namedtuple就派上了用场:

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(1, 2)
p.x

1

p.y

2

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

可以验证创建的Point对象是tuple的一种子类:

isinstance(p, Point)

True

isinstance(p, tuple)

True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

from collections import deque
q = deque(['a', 'b', 'c'])
q.append('x')
q.appendleft('y')
q

deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

from collections import defaultdict
dd = defaultdict(lambda: 'N/A')
dd['key1'] = 'abc'
dd['key1'] # key1存在

'abc'

dd['key2'] # key2不存在,返回默认值

'N/A'

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

from collections import OrderedDict
d = dict([('a', 1), ('b', 2), ('c', 3)])
d # dict的Key是无序的

{'a': 1, 'b': 2, 'c': 3}

od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
od # OrderedDict的Key是有序的

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

od = OrderedDict()
od['z'] = 1
od['y'] = 2
od['x'] = 3
od.keys() # 按照插入的Key的顺序返回

odict_keys(['z', 'y', 'x'])

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print('remove:', last)
        if containsKey:
            del self[key]
            print('set:', (key, value))
        else:
            print('add:', (key, value))
        OrderedDict.__setitem__(self, key, value)

Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

from collections import Counter
c = Counter()
for ch in 'programming':
    c[ch] = c[ch] + 1
c

Counter({'p': 1, 'r': 2, 'o': 1, 'g': 2, 'a': 1, 'm': 2, 'i': 1, 'n': 1})

Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。

总结

collections模块提供了一些有用的集合类,可以根据需要选用。

你可能感兴趣的:(python,开发语言)